• Title/Summary/Keyword: Technology Forecasting

Search Result 789, Processing Time 0.031 seconds

Elimination of Outlier from Technology Growth Curve using M-estimator for Defense Science and Technology Survey (M-추정을 사용한 국방과학기술 수준조사 기술성장모형의 이상치 제거)

  • Kim, Jangheon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.76-86
    • /
    • 2020
  • Technology growth curve methodology is commonly used in technology forecasting. A technology growth curve represents the paths of product performance in relation to time or investment in R&D. It is a useful tool to compare the technological performances between Korea and advanced nations and to describe the inflection points, the limit of improvement of a technology and their technology innovation strategies, etc. However, the curve fitting to a set of survey data often leads to model mis-specification, biased parameter estimation and incorrect result since data through survey with experts frequently contain outlier in process of curve fitting due to the subjective response characteristics. This paper propose a method to eliminate of outlier from a technology growth curve using M-estimator. The experimental results prove the overall improvement in technology growth curves by several pilot tests using real-data in Defense Science and Technology Survey reports.

Energy Scenarios and the Politics of Expertise in Korea (한국의 에너지 시나리오와 전문성의 정치)

  • Han, Jae-Kak;Lee, Young Hee
    • Journal of Science and Technology Studies
    • /
    • v.12 no.1
    • /
    • pp.107-144
    • /
    • 2012
  • Recently concerns on the energy future are rising in Korea after nuclear disaster of Fukushima in Japan last year. However, even after Fukushima disaster Korean government keeps on insisting nuclear oriented energy policy. Contrary to it, some of civil society's organizations(CSOs) including environment groups and progressive political parties are making strong voices for phase-out nuclear. As a way of phase-out nuclear activity researcher groups based on CSOs have presented several alternative energy scenarios against the official government scenario so that contest between the two senarios seems not to be avoided. This article aims to analyse the politics of expertise around energy scenarios in Korea by highlighting differences between two scenarios of government and CSOs in terms of epistemological and methodological base, value orientation, institutional foundation, and the socio-political contexts of scenarios. Our research shows that government's energy scenario is based on scientific-positivist epistemology, firm belief in value neutrality and forecasting method, and is built by neo-classical economists at government-sponsored research institutes in accordance with the 'Business As Usual' approach. In contrast, alternative scenarios of CSOs can be said to be based on epistemological constructivism, value oriented attitudes and backcasting method, and be built by collaboration of researchers and activists with different academic and social backgrounds after Fukushima nuclear disaster.

  • PDF

Prospecting the Market of the Modular Housing Using the Nonlinear Forecasting Models (비선형 예측모형을 활용한 모듈러주택 시장전망)

  • Park, Nam-Cheon;Kim, Kyoon-Tai;Kim, In-Moo;Kim, Seok-Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.631-637
    • /
    • 2014
  • Recently, following the application of modular housing techniques to not only residential sector, but also to business sector, the scope of modular housing market b expanding. In the case of other developed countries, such markets are entering into the maturity stage, though the market in Korea is not fully formed yet. Thus, it is difficult to check its trend to estimated mid- to long-term prospects of the market. In this context, the study predicted demand of the modular housing market by using a non-linear prediction model based on time series analysis. To get the prospects for the modular housing market, the quantity of housing supply was estimated based on the estimated quantity of newly built housings, and assumed that a portion of the supplied quantity would be the demand for modular housings. Based on the assumption of demand for modular housings, several scenarios were analyzed and the prospects of the modular housing market was obtained by utilizing the non-linear prediction model.

A Study on the Prediction of Fishing Conditions of Common Squid , Todarodes Pacificus Steenstrup in the Eastern Korean Sea (한국동해안 오징어 어황예측에 관한 연구)

  • Park, Jong-Hwa;Choi, Kwang-Ho;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.327-336
    • /
    • 1992
  • In order to establish one of the forecasting model for the fishing conditions of squid angling fisheries in the Eastern Korea Sea, the catch data for the years of 1955~1991 and the water temperature data for the years of 1979~1990 were analysed, and then some parameters, that is, the water temperature normal year anomaly in the spawning and the rapidly growing season, the adult resource amount and etc were examined statistically correlation with the catch fluctuation of the main fishing seasons. From the result, authors suggested a formula as a forecasting model, Y=25785+1099X sub(1)+1074X sub(2)+6.033X sub(3)+3.95X sub(4)+1.330X sub(5)(M/T)(R super(2)=0.867, P<0.01) in the case that Y is the yearly catch, X sub(1) and X sub(2) are the water temperature normal year anomalies in October and December of the previous year and that in February and April, and X sub(3), X sub(4) and X sub(5) are the catches in October, in September, in November of previous year respectively. Because these parameters could be checked in earlier time of a half year before the main fishing season, this model was assumed to be very useful for the prediction of fishing conditions of squid angling fisheries.

  • PDF

Study on Computational Fluid Dynamics(CFD) simulation for NOx dispersion around combined heat and power plant (열병합발전소 질소산화물 확산에 관한 전산유체역학 simulation 연구)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • In order to deal with the globally increasing electric power demand and reduce $CO_2$ emission, complex thermoelectric power plants are being constructed in densely populated downtown areas. As the environmental regulations are continuously strengthened, various facilities like low NOx burner and SCR are being installed to reduce NOx emission. This study is applied using the TMS emission of $NO_2$ from combined heat and power plant located in Goyang-si Gyeonggi-do. Applying data to the computational fluid dynamics(CFD), and compared with the actual measurement results. It is judged that even though there might be differences between actual measurements and CFD results due to the instant changes of wind direction and wind speed according to measurement time during measurement period, modeling results and actual measurement results showed similar concentration at most forecasting areas and therefore, the forecasting concentration could be deducted which is close to actual measurement by calculating the contribution concentration considering the surrounding concentration in the future.

A Global-Local Approach for Estimating the Internet's Threat Level

  • Kollias, Spyridon;Vlachos, Vasileios;Papanikolaou, Alexandros;Chatzimisios, Periklis;Ilioudis, Christos;Metaxiotis, Kostas
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.407-414
    • /
    • 2014
  • The Internet is a highly distributed and complex system consisting of billion devices and has become the field of various kinds of conflicts during the last two decades. As a matter of fact, various actors utilise the Internet for illicit purposes, such as for performing distributed denial of service attacks (DDoS) and for spreading various types of aggressive malware. Despite the fact that numerous services provide information regarding the threat level of the Internet, they are mostly based on information acquired by their sensors or on offline statistical sampling of various security applications (antivirus software, intrusion detection systems, etc.). This paper introduces proactive threat observatory system (PROTOS), an open-source early warning system that does not require a commercial license and is capable of estimating the threat level across the Internet. The proposed system utilises both a global and a local approach, and is thus able to determine whether a specific host is under an imminent threat, as well as to provide an estimation of the malicious activity across the Internet. Apart from these obvious advantages, PROTOS supports a large-scale installation and can be extended even further to improve the effectiveness by incorporating prediction and forecasting techniques.

Urban Sprawl prediction in 2030 using decision tree (의사결정나무를 활용한 2030년 도시 확장 예측)

  • Kim, Geun-Han;Choi, Hee-Sun;Kim, Dong-Beom;Jung, Yee-Rim;Jin, Dae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.125-135
    • /
    • 2020
  • The uncontrolled urban expansion causes various social, economic problems and natural/environmental problems. Therefore, it is necessary to forecast urban expansion by identifying various factors related to urban expansion. This study aims to forecast it using a decision tree that is widely used in various areas. The study used geographic data such as the area of use, geographical data like elevation and slope, the environmental conservation value assessment map, and population density data for 2006 and 2018. It extracted the new urban expansion areas by comparing the residential, industrial, and commercial zones of the zoning in 2006 and 2018 and derived a decision tree using the 2006 data as independent variables. It is intended to forecast urban expansion in 2030 by applying the data for 2018 to the derived decision tree. The analysis result confirmed that the distance from the green area, the elevation, the grade of the environmental conservation value assessment map, and the distance from the industrial area were important factors in forecasting the urban area expansion. The AUC of 0.95051 showed excellent explanatory power in the ROC analysis performed to verify the accuracy. However, the forecast of the urban area expansion for 2018 using the decision tree was 15,459.98㎢, which was significantly different from the actual urban area of 4,144.93㎢ for 2018. Since many regions use decision tree to forecast urban expansion, they can be useful for identifying which factors affect urban expansion, although they are not suitable for forecasting the expansion of urban region in detail. Identifying such important factors for urban expansion is expected to provide information that can be used in future land, urban, and environmental planning.

Multivariate Congestion Prediction using Stacked LSTM Autoencoder based Bidirectional LSTM Model

  • Vijayalakshmi, B;Thanga, Ramya S;Ramar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.216-238
    • /
    • 2023
  • In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.

Development of Demonstration Technology for Flash Flood Forecasting using Rainfall Radar in Flood Vulnerable Area of Nakdong River Basin (강우레이더 자료를 활용한 낙동강유역 홍수예보 취약지역 돌발홍수예보 실증 기술 개발)

  • Hwang, Seok Hwan;Shin, Chang Ho;Kim, Keuk Soo;Choi, Kyu Hyun;Cho, Hyo Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.320-320
    • /
    • 2021
  • 홍수피해가 빈발하는 도시 및 소규모 산지 유역에서와 같이 지체시간이 짧은 유역에서 국지적으로 발생하는 돌발홍수는 우량계와 기존 하천유역 예보시스템만으론 예보가 불가능하다. 동일한 강우에서도 지역에 따라 침수시간이나 침수심이 달라지기 때문에 정확한 돌발홍수예보를 위해서는 지역에 따른 침수특성과 유속특성을 달리 고려해야 한다. '골든타임 확보를 위한 유역 시공간 상세 홍수예보기술 개발(환경부)'에서 개발한 '국지 돌발홍수예측 시스템'은 지역별 검증된 침수특성과 유속특성의 관계식을 산정하여 돌발홍수예보 기준을 설정하였다. 그리고 도달시간이 짧은 도시 및 산지에서 홍수예보 선행시간을 확보하기 위해 강우레이더 기반 돌발홍수 예측 시스템을 구축하여 시범 운영 중이다. 그러나 도시·산지 중소하천유역 등 홍수예보 취약지역에 대한 돌발홍수예보 정확도를 제고하기 위해서는 기 설정된 돌발홍수위험 예보 기준을 정밀하게 평가·검증·개선 할 수 있는 실증 체계가 반드시 필요하다. 이러한 배경에서 본 연구에서는 2021년부터 3개년 동안 홍수예보 취약지역에 강우레이더와 경제적 IoT 관측센서 정보를 기반으로 돌발홍수예보 실증기술을 개발하여 전국 돌발홍수예보 실용화 기반 구축하고자 한다. 홍수피해 취약지역인 도심지, 산지·계곡, 해안지역에 실증 테스트베드를 선정하고 강우레이더-IoT 실증 관측망을 구축하여 돌발홍수예보 기술 실증과 돌발홍수 위험기준 설정 가이드라인을 마련하고자 한다. 더불어 도시 중소하천유역 홍수예보 활용을 위한 소형강우레이더 강우량 정확도 개선 기술 개발과 홍수기 강우레이더 기반 홍수예보 관-연 협업 시범 운영을 추진할 계획이며, 최종적으로는 강우레이더와 IoT 정보 기반 돌발홍수 실증 시스템을 구축 운영하고자 한다.

  • PDF

Trends in Disaster Prediction Technology Development and Service Delivery (재난예측 기술 개발 및 서비스 제공 동향)

  • Park, Soyoung;Hong, Sanggi;Lee, Kangbok
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2020
  • This paper describes the development trends and service provision examples of disaster occurrence and spread prediction technology for various disasters such as tsunamis, floods, and fires. In terms of fires, we introduce the WIFIRE system, which predicts the spread of large forest fires in the United States, and the Metro21: Smart Cities Institute project, which predicts the risk of building fires. This paper describes the development trends in tsunami prediction technology in the United States and Japan using artificial intelligence (AI) to predict the occurrence and size of tsunamis that cause great damage to coastal cities in Japan, Indonesia, and the United States. In addition, it introduces the NOAA big data platform built for natural disaster prediction, considering that the use of big data is very important for AI-based disaster prediction. In addition, Google's flood forecasting system, domestic and overseas earthquake early warning system development, and service delivery cases will be introduced.