• 제목/요약/키워드: Technology Data Analysis

검색결과 16,078건 처리시간 0.064초

빅 데이터의 새로운 고객 가치와 비즈니스 창출을 위한 대응 전략 (Correspondence Strategy for Big Data's New Customer Value and Creation of Business)

  • 고준철;이해욱;정지윤;강경식
    • 대한안전경영과학회지
    • /
    • 제14권4호
    • /
    • pp.229-238
    • /
    • 2012
  • Within last 10 years, internet has become a daily activity, and humankind had to face the Data Deluge, a dramatic increase of digital data (Economist 2012). Due to exponential increase in amount of digital data, large scale data has become a big issue and hence the term 'big data' appeared. There is no official agreement in quantitative and detailed definition of the 'big data', but the meaning is expanding to its value and efficacy. Big data not only has the standardized personal information (internal) like customer information, but also has complex data of external, atypical, social, and real time data. Big data's technology has the concept that covers wide range technology, including 'data achievement, save/manage, analysis, and application'. To define the connected technology of 'big data', there are Big Table, Cassandra, Hadoop, MapReduce, Hbase, and NoSQL, and for the sub-techniques, Text Mining, Opinion Mining, Social Network Analysis, Cluster Analysis are gaining attention. The three features that 'bid data' needs to have is about creating large amounts of individual elements (high-resolution) to variety of high-frequency data. Big data has three defining features of volume, variety, and velocity, which is called the '3V'. There is increase in complexity as the 4th feature, and as all 4features are satisfied, it becomes more suitable to a 'big data'. In this study, we have looked at various reasons why companies need to impose 'big data', ways of application, and advanced cases of domestic and foreign applications. To correspond effectively to 'big data' revolution, paradigm shift in areas of data production, distribution, and consumption is needed, and insight of unfolding and preparing future business by considering the unpredictable market of technology, industry environment, and flow of social demand is desperately needed.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

건설공사 사후평가시스템 입력오류 분석에 관한 연구 (A Study of Error Analysis for Post Evaluation System on the Construction Projects)

  • 김경훈;이두헌;김태영
    • 한국건설관리학회논문집
    • /
    • 제16권2호
    • /
    • pp.77-85
    • /
    • 2015
  • 현재 건설공사 사후평가시스템 입력과정에서 자료가 오류 및 누락이 발생되는 경우가 많아 데이터의 신뢰성이 떨어지는 경우가 많다. 이에 따라 본 연구에서는 사후평가 결과분석의 신뢰성 확보를 위해 건설공사 사후평가시스템의 입력누락 및 입력오류에 대한 세부적인 분석을 실시하였다. 분석결과, 건설사업 초기 단계일수록 자료의 미입력된 자료의 비중이 높게 나타났다. 그리고 분석된 등록오류로는 참고자료의 부정확, "원" 단위 오류, 입력항목에 대한 이해부족 등으로 나타났다.

정보융합 기법을 활용한 잠수함 표적기동분석 성능향상 연구 (The Improvement of Target Motion Analysis(TMA) for Submarine with Data Fusion)

  • 임영택;고순주;송택렬
    • 한국군사과학기술학회지
    • /
    • 제12권6호
    • /
    • pp.697-703
    • /
    • 2009
  • Target Motion Analysis(TMA) means to detect target position, velocity and course for using passive sonar system with bearing-only measurement. In this paper, we apply the TMA algorithm for a submarine with Multi-Sensor Data Fusion(MSDF) and we will decide the best TMA algorithm for a submarine by a series of computer simulation runs.

데이터 마이닝을 이용한 생산공정 데이터 분석 시나리오 (Scenarios for Manufacturing Process Data Analysis using Data Mining)

  • 이형욱;배성민
    • 융복합기술연구소 논문집
    • /
    • 제3권1호
    • /
    • pp.41-44
    • /
    • 2013
  • Process and manufacturing data are numerously accumulated to the enterprise database in industries but little of those data are utilized. Data mining can support a decision to manager in process from the data. However, it is not easy to field managers because a proper adoption of various schemes is very difficult. In this paper, six scenarios are conducted using data mining schemes for the various situations of field claims such as yield problem, trend analysis and prediction of yield according to changes of operating conditions, etc. Scenarios, like templates, of various analysis situations are helpful to users.

  • PDF

디지털 덴탈 헬스케어 분야에서의 빅데이터 활용 전망에 대한 연구 (A study on the applications and prospects of big data in the field of digital dental healthcare)

  • 류재경;김남중;김소민;이선경
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.42-48
    • /
    • 2024
  • Purpose: The purpose of this study is to investigate the applications and prospects of big data in digital dental healthcare. Methods: The study included 30 participants in the dental field (dentists, technicians, professors, and graduate students). From June 25 to 30, 2023, the contents of the study were thoroughly explained, consent was obtained from the research subjects, and a questionnaire was administered via an internet service. The questionnaires of 28 participants who responded completely were used for analysis. The collected data were statistically processed using IBM SPSS Statistics ver. 22.0 (IBM). Results: The use of big data in digital dental healthcare, digital dental health system, mobile dental health, dental health analysis, and telehealthcare were all heavily surveyed, with an average score of 3.97 or higher on a 5-point Likert scale. The areas where big data can be utilized in digital dental healthcare are as follows. The utilization rate for three-dimensional digital product development via linkage with big data systems and industrial field manufacturing technology was found to be 4.11±0.67, and the analysis of trends by age in the occurrence of various oral diseases was found to be 4.00±0.98. Conclusion: In the future, research into the viability of big data's success in the medical data field, which is directly related to human life, is needed. Additionally, social policies and regulations regarding big data-related information and standards in dental healthcare are necessary.

A Data-centric Analysis to Evaluate Suitable Machine-Learning-based Network-Attack Classification Schemes

  • Huong, Truong Thu;Bac, Ta Phuong;Thang, Bui Doan;Long, Dao Minh;Quang, Le Anh;Dan, Nguyen Minh;Hoang, Nguyen Viet
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.169-180
    • /
    • 2021
  • Since machine learning was invented, there have been many different machine learning-based algorithms, from shallow learning to deep learning models, that provide solutions to the classification tasks. But then it poses a problem in choosing a suitable classification algorithm that can improve the classification/detection efficiency for a certain network context. With that comes whether an algorithm provides good performance, why it works in some problems and not in others. In this paper, we present a data-centric analysis to provide a way for selecting a suitable classification algorithm. This data-centric approach is a new viewpoint in exploring relationships between classification performance and facts and figures of data sets.

자동 분류 기술을 활용한 온라인 강의 평가 방법 (Online Course Evaluation Method by Using Automatic Classification Technology)

  • 이용배
    • 정보교육학회논문지
    • /
    • 제24권4호
    • /
    • pp.291-300
    • /
    • 2020
  • 국내외 온라인 강의에 대한 학습자와 프로그램 수요는 증가하고 있지만 이에 대한 평가 방법은 설문지에 의한 정량적인 수치에 의존하고 있으며 객관적인 학습 만족도에 대한 평가 방법은 마련돼 있지 않다는 것이 문제점으로 드러나고 있다. 본 연구에서는 온라인 학습 시스템의 게시판에 있는 빅 데이터 메시지를 분석하여 온라인 강의를 평가하는 방법을 제안하려고 한다. 실제로 빅 데이터 분석기법 중 중요한 기술로 인식되는 자동분류 기법을 적용하여 온라인 강의 평가에 시범 적용해 보았으며 델파이 분석 결과에서도 평가 항목과 분류 결과 등이 온라인 강의 평가에 적합하고 학교나 기관에서 적용해볼 만하다는 결론을 얻었다. 본 연구는 빠르게 축적되고 있는 빅 데이터 분석기술을 가장 변화가 늦은 교육 분야에 적용해 보고 확장 가능성을 진단해보는데 의의가 있다.

인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석 (Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology)

  • 차주호;류민우
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

Recommendation of Optimal Treatment Method for Heart Disease using EM Clustering Technique

  • Jung, Yong Gyu;Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • 제5권3호
    • /
    • pp.40-45
    • /
    • 2017
  • This data mining technique was used to extract useful information from percutaneous coronary intervention data obtained from the US public data homepage. The experiment was performed by extracting data on the area, frequency of operation, and the number of deaths. It led us to finding of meaningful correlations, patterns, and trends using various algorithms, pattern techniques, and statistical techniques. In this paper, information is obtained through efficient decision tree and cluster analysis in predicting the incidence of percutaneous coronary intervention and mortality. In the cluster analysis, EM algorithm was used to evaluate the suitability of the algorithm for each situation based on performance tests and verification of results. In the cluster analysis, the experimental data were classified using the EM algorithm, and we evaluated which models are more effective in comparing functions. Using data mining technique, it was identified which areas had effective treatment techniques and which areas were vulnerable, and we can predict the frequency and mortality of percutaneous coronary intervention for heart disease.