
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

169

Manuscript received June 5, 2021
Manuscript revised June 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.6.23

A Data-centric Analysis to Evaluate Suitable Machine-Learning-based
Network-Attack Classification Schemes

Truong Thu Huong†, Ta Phuong Bac††, Bui Doan Thang†, Dao Minh Long†, Le Anh Quang†, Nguyen
Minh Dan†, Nguyen Viet Hoang†

Corresponding author: huong.truongthu@hust.edu.vn
†Hanoi University of Science and Technology, Hanoi, Vietnam

††Soongsil University, Seoul 06978, Korea

Summary
Since machine learning was invented, there have been many
different machine learning-based algorithms, from shallow
learning to deep learning models, that provide solutions to the
classification tasks. But then it poses a problem in choosing a
suitable classification algorithm that can improve the
classification/detection efficiency for a certain network context.
With that comes whether an algorithm provides good performance,
why it works in some problems and not in others. In this paper, we
present a data-centric analysis to provide a way for selecting a
suitable classification algorithm. This data-centric approach is a
new viewpoint in exploring relationships between classification
performance and facts and figures of data sets.
Key words:
Machine learning, deep learning, shallow learning, datasets.

1. Introduction

Data and model are essential components that play a
significant role in building an artificial intelligence (AI)
system applied in many different fields such as
telecommunication, cyber-security, recommendation
systems, web, finance, ecology, biology, etc. Conventional
machine learning algorithms learn from training data and
make predictions by optimizing model parameters, which is
an iterative process. The training data is processed multiple
times, and the model parameters update iteratively. In this
iterative process, there are two primary directions to achieve
a good AI solution: the model-centric and data-centric
approach. A model-centric view involves designing
empirical tests around the model to improve performance
and finding the exemplary model architecture and training
process in an ample space of possibilities.

 In contrast, the data-centric approach involves
systematically changing or enhancing the quality of the
training data sets to improve AI system performance. In the
AI community, most research efforts focus on model-
centric AI by developing new algorithms to replace existing
algorithms or using a heuristic approach from empirical
knowledge to choose a suitable algorithm [1] . In paper [1] ,
the author proposed a method to select the best algorithms
from candidate algorithms using a heuristic approach,
automatically performed by theoretically analyzing the

applicability of these classification algorithms. However,
such theory-based methods require more background
knowledge from a more specific field. Furthermore, not all
possible applications of classification algorithms are
possibly practically feasible.

 In the same direction, Brazdil et al. [2] combine
statistics and information theory measures to extract meta-
features for different data sets. These features serve the
execution process on many algorithms to determine the
algorithm's applicability. The final decision is made based
on a rule-based model with a set of rules.

Meta-learning [3] is a framework developed in the
field of supervised machine learning with the aim of
supporting solving important problems in the field of
machine learning as classifier selection [4] . This method
will provide a meta-learning framework to map an existing
problem or task to one or several algorithms that are best
suited to solve the problem.

However, the fact that there are many available
classification algorithms creates a challenge for users in
choosing and using an appropriate algorithm for their attack
classification task. Therefore, the challenge is to explore the
relationship of the performance of the algorithms with the
characteristics of the training datasets and then choose an
algorithm that best fits the data. This is a direction that has
received the attention of many researchers many years ago
[5] [6] [7] . However, these methods need to be updated and
adapted to the wide popularity and development of artificial
intelligence-based technologies and the increasing number
of machine learning algorithms and the number of forms.

According to the “No Free Lunch” theory [8] , in the
machine learning context, that has depicted that there is no
single algorithm applicable to all different data sets. This
theory implies that the performances of all algorithms are
equally good if tested over a sufficiently large number of
datasets. In other words, there is not a magic algorithm that
is the best in every situation, and no general
recommendations can be made for arbitrary data. Data
characteristics or dataset meta-features always affect the
actual performance of a classifier.

In this paper, we do not propose a set of classifiers to
choose the best algorithm for the classification problem.
Instead, the content of the study provides readers with a new

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

170

data-centric analysis to support choosing a classification
algorithm suitable for a certain type of training data being
used. We review some of the available classification
algorithms that can be applied in cybersecurity; and the
results of analysis, evaluation, and conclusions are made on
the dataset of actual cyber-attacks.

The rest of our paper is organized as follows:

Background on data characteristics that elaborates data
parameters used in our study are provided in Section 2. In
Section 3, we elaborate how we set up our experiments in
terms of a machine learning algorithms and training data
sets. Then the facts and figures on data characteristics as
well as detection performance are given and analyzed.
Finally, some discussion is given in Section 4.

2. Background on data characteristics

To better understanding why an algorithm has better
performance on a dataset over other algorithms, we need to
examine the characteristics of a dataset. This paper
introduces three types of data characteristics: Statistical
measures, Discriminated measures and Information-
theoretic measures.

2.1. Statistical measures

Skewness is the measure of the asymmetry of a probability
distribution. A variable with normal distribution will have
0 skewness. On the other hand, a positive or negative
skewness indicates the most probable value will be on the
left or right-hand side, respectively. Skewness is calculated
as followed:

𝑆𝑘𝑒𝑤 ൌ ෍
|𝑥௜ െ 𝑚|ଷ

𝑁 ∗ 𝛿ଷ

ே

௜ୀଵ

Kurtosis is the measure of whether a variable has heavy-
tailed or light-tailed distribution. Larger kurtosis means
heavier tail and less concentrated central. A normal
distribution variable has zero kurtosis. Kurtosis is
calculated as:

𝐾𝑢𝑟𝑡 ൌ ෍
ሺ𝑥௜ െ𝑚ሻସ

𝑁 ∗ 𝛿ସ
െ 3

ே

௜ୀଵ

Where:

 N is the sample size
 𝑥௜ is the sample value of a variable
 m is the average value of that variable
 δ is the standard deviation

Mean absolute correlation coefficient: The last statistical
measure is the mean absolute correlation coefficient. The
correlation is a metric calculated between two variables and
represents the linearity of their relationship. The closer the
absolute value is to 1, the stronger the correlation between
the two variables. The mean absolute correlation coefficient
is the absolute value of the correlations averaged over all
pairs of features and all classes. In this research, we use
Pearson’s Correlation Coefficient, which can be computed
as:

𝑃𝐶𝐶 ൌ
∑ ሺ𝑥௜ െ µ௫ሻ൫𝑦௜ െ µ௬൯
ே
௜ୀଵ

ඥ∑ ሺ𝑥௜ െ µ௫ሻଶே
௜ୀଵ ∗ ට∑ ൫𝑦௜ െ µ௬൯

ଶே
௜ୀଵ

Where 𝑥௜ and 𝑦௜ are individual datapoints of the two
variables and µ௫ and µ௬ are their mean, respectively.

2.2. Discriminant measures

The discriminant measures are based on Linear
Discriminant Analysis, in which the classifier tries to
transform the data to another dimension where it would be
easier to classify the data by minimizing within-between
variance ratio. The three measures are:

Within-class variance

𝑠ௐ ൌ 𝑡𝑟𝑎𝑐𝑒ሺ𝑾்𝑺ௐ𝑾ሻ

Between class variance

𝑠஻ ൌ 𝑡𝑟𝑎𝑐𝑒ሺ𝑾்𝑺஻𝑾ሻ

Within/between class variance ratio

𝑅 ൌ
𝑠ௐ
𝑠஻

Where:

 𝑺ௐ ൌ ∑ ∑ ሺ𝒙௡ െ𝒎௞ሻሺ𝒙௡ െ𝒎௞ሻ்௡ఢ𝒞ೖ ,஼
௞ୀଵ

 𝑺஻ ൌ ∑ 𝑁௞ሺ𝒎௞ െ𝒎ሻሺ𝒎௞ െ𝒎ሻ் ,஼
௞ୀଵ

 W = 𝑎𝑟𝑔max
୛

𝑅

 C : the number of classes.
 𝒞௞ : the indexes of all the datapoints in class k.
 𝑁௞ : the number of datapoints in class k.
 𝒙௡ : a datapoint with index n.
 𝒎 : the mean vector of all data.
 𝒎௞ : the mean vector of all data in class k.

2.3. Information theoretic measures

The following information theoretic measures [19] are
normally used for categorical or discreate value. To use the

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

171

following characteristics for continuous cases, we can
divide the variable value into a number of partitions and
treat the partition as a discreate value.

Entropy of attributes:

𝐻௑ ൌ െ෍𝑞௜ ∗ log ሺ𝑞௜ሻ

Where: 𝑞௜ is the probability of the ith possible value

Entropy of class:

𝐻஼ ൌ െ෍𝑐௜ ∗ log ሺ𝑐௜ሻ

Where: 𝑐௜ is the probability of the ith class.

Joint entropy of class and attribute:

𝐻஼,௑ ൌ െ෍𝑝௜௝ ∗ log ሺ𝑝௜௝ሻ
௜,௝

Where 𝑝௜௝ is the probability that attribute X has ith value
and belong in jth class.

Mutual information of class and attribute:

𝑀஼,௑ ൌ 𝐻஼ ൅ 𝐻௑ െ 𝐻஼,௑

Equivalent number of attributes:

𝐸𝑞𝐴𝑡𝑡𝑟 ൌ
𝐻௖
𝑀ഥ஼,௑

Noisiness of attributes:

𝑁𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠 ൌ
𝐻ഥ௑
𝑀ഥ஼,௑

െ 1

3. Performance of anomaly detection schemes

3.1 Experimental setup on machine learning-based
detection algorithms

To evaluate the effects of various characteristics to the
classification process, we run 13 Machine-learning
algorithms on top of those 25 data sets (the datasets will be
elaborated in the following subsection). The 13 algorithms
include both shallow-model algorithms and deep-model
algorithms, as follows:

 Shallow model: Decision tree, Linear Discriminant
Analysis, K-Nearest Neighbors, Support Vector
Machine, Shallow Neural Network, Naïve Bayes,
Logistic Regression

 Deep model: Bidirectional-recurrent neural network,
Gated Recurrent Units, Long Short-term Memory,
Deep Neural Network, Convolutional Neural Network,
Deep Belief Network.

Fig. 1: Taxonomy of the ML algorithms used in our analysis

3.2 Experimental setup on Data sets

To evaluate and assess detection performance of the 13
machine-learning-based detection schemes, originally, 7
different datasets of network traffic collected from IoT
devices are selected as follows:

 IoTID20 [9] : a dataset stems from a IoT environment
of two typical smart home devices being attacked by
other devices in the network. This csv-formatted
dataset includes 83 network features along with label
feature of normal and eight different attack types,
ranging from Denial of Service, Mirai, Man in the
Middle to Scan.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

172

 N-BaIoT [10] : a dataset about a network constitutes
IoT devices in enterprise context. In this dataset, a
total of 115 features about traffic statistics over 5
temporal windows were extracted when two common
IoT botnets, namely BASHLITE and Mirai, were
injected into the network to execute multiple attacks.

 Kitsune [11] : a NIDS dataset with 115 statistical

features over different time windows containing
traffic of two networks. A surveillance network
consists of two separate four-camera clusters, nine
different attack scenarios of type Recon, Man in the
Middle, Denial of Service and Botnet Malware were
recorded. In the second network, this is an IoT
network of 9 IoT devices and 3 personal computers in
which Mirai botnet malware attack was conducted.

 MQTTset [12] : an IoT cyber-security dataset with 60
features that focuses on communications using the
Message Queue Telemetry Transport (MQTT)
protocol. The network consists of 8 sensors, each of
which directly communicates with the MQTT broker
to simulate a smart house scenario. MQTTset includes
legitimate network data and five categories of MQTT-
based cyber-attacks.

 MQTT-IoT-IDS2020 [13]: an IoT dataset simulating
a realistic MQTT IoT network, which includes 12
sensors, an MQTT broker, a camera feed server, and
an attacker machine. MQTT-IoT-IDS2020 consists of
1 normal scenario and 4 attack scenarios were
collected separately with the normal scenario in the
background.

 TON_IoT [14] : a telemetry dataset in the context of
Industrial IoT, derived from a medium-scale IoT
testbed with seven IoT and Industrial IoT sensors. The
dataset includes normal network data and 9 types of
cyber-attacks, which were executed against various
sensors across the network.

 UNSW-NB15 [15] : a dataset created for Network
Intrusion Detection Systems, addressing the problems
of the existing datasets such as duplicated samples,
unrepresentative training sets and test sets, and the
lack of low-footprint cyberattacks. 100 GBs of hybrid
(normal and attack scenarios) network data was
generated and passed through feature extraction tools
to create the dataset.

 CIC-IDS2017[16] : a NIDS dataset generated from
and captured in a comprehensive dataset infrastructure,
which was separated into two distinct networks: the
Victim-Network and the Attack-Network. The B-

Profile system was utilized to emulate realistic benign
traffic in the background while one of six types of
cyberattacks was being executed against the Victim-
Network.

 CIC-DDoS2019 [17] : a dataset generated from an
analogous two-network testbed as CIC-IDS2017 with
differences of Victim-Network consisting of one
server, one firewall, two switches and four PCs while
Attack-Network deployed by third party tools
executing a disparate group of 12 DDoS attacks. The
subsequent dataset comprises 80 different flow-based
features extracted using the CICFlowMeter tool [18] .

To investigate the relationship between the characteristics
of a data set and the detection performance (e.g accuracy,
F1-score, Precision, Recall, AUC) of the 13 popular ML-
based detection algorithms aforementioned. We increase
the number of datasets and diversify the data characteristics
in our experiments by splitting the 9 original datasets into
25 smaller ones. Each dataset has its own characteristics in
basic measures such as the number of samples (from 8125
to 242787 samples), the number of classes (3-8 classes), and
in other measures (such as statistic measures, discriminant
measures, etc.)

3.3. Experimental setup on detection parameters

In this subsection, we describe a set of metrics used in
our evaluation of machine learning algorithms’
classification performance. The first metric is training time,
which is the duration a specific algorithm uses for the model
building phase, measured in minutes.

The second parameter is Accuracy, which is the fraction of
total samples correctly classified by classifier model:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

The third metric used is macro-averaged precision
calculating the average precision, in which each class is
treated equally to others:

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
1
𝑁
෍𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜

ேିଵ

௜ୀ଴

where N is the total number of classes and i is class index.

Likewise, macro-averaged recall and macro-averaged F1-
score are computed by averaging recall and F1-score of
each individual class, respectively:

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
1
𝑁
෍𝑅𝑒𝑐𝑎𝑙𝑙௜

ேିଵ

௜ୀ଴

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

173

𝑀𝑎𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ
1
𝑁
෍𝐹1 𝑆𝑐𝑜𝑟𝑒௜

ேିଵ

௜ୀ଴

where N is the total number of classes and i is class index.

In each class, the corresponding metrics are calculated as
follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ൅ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ൅ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹1𝑆𝑐𝑜𝑟𝑒 ൌ 2 ൈ
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙

Where:

 TruePositive: number of outcomes correctly predicted

as positive.
 FalsePositive: number of wrong predictions of actual

negative as positive.
 FalseNegative: number of wrong predictions of actual

positive as negative.

The final metric used for this performance analysis is Area
Under the Receiver Operating Characteristic Curve (i.e.
AUC), computed in both micro-averaged and macro-
averaged manner. While micro-averaged is computed by
treating each element of the label indicator matrix as a
binary prediction, macro-averaged gives equal weight to the
classification of each label as aforementioned calculations.
These metrics computation will help us to assess the overall
performance of each machine algorithm over a collection of
datasets in the following sections.

3.4 Performance Analysis

3.4.1 Findings on dataset characteristics

Table 1 shows the characteristics of the statistic measures
(e.g. Skewness, Kurtosis, Correlation Coefficient) and
discriminant measures (Within-class variance, Between
Class variance, BW class variance ratio) of the 25 datasets
in our experiment.

While Table 2 shows the findings on the Information
theoretic measures (e.g. Entropy of classes, Entropy of
attributes, Mutual information of classes and attributes,
Equivalent number of attributes, Noisiness of attribute) and
basic measures (e.g. Number of samples, Number of
attributes, Number of classes) of those datasets.

Table 1: Statistic measures and discriminant measures

 Statistic Measures Discriminant Measures

Dataset
Mean Absolute
Skewness Mean Kurtosis

Mean Absolute
Correlation
Coefficient

Within Class
Variance

Between Class
Variance

BW Class
Variance Ratio

1 14.1568 2375.93 0.383013 102.028 8.372598 0.082062

2 3.470468 169.5141 0.34325 83.65785 8.244138 0.098546

3 13.10017 552.5776 0.249309 159645.5 16121.32 0.100982

4 43.2335 17777.06 0.312516 2.69661 0.255143 0.094616

5 33.82218 5370.224 0.242386 277812.5 27568.15 0.099233

6 9.656811 1064.526 0.377135 78.26708 6.406469 0.081854

7 2.900592 160.436 0.353527 21.6827 2.17989 0.100536

8 12.30063 423.8788 0.272488 51359.67 5204.035 0.101325

9 5.46019 536.5678 0.328734 1.25E-10 1.18E-11 0.09484

10 21.92411 1940.541 0.258087 61195.58 6072.069 0.099224

11 31.12854 5703.112 0.252651 289149.2 28714.34 0.099306

12 4.47841 63.14469 0.329684 17555.54 1351.986 0.077012

13 78.96164 15762.92 0.14306 25950.51 2379.746 0.091703

14 80.41875 16583.36 0.155178 18545.02 1747.006 0.094203

15 46.64629 8920.242 0.468853 1.34E+10 1.08E+09 0.08033

16 22.22354 1882.079 0.458282 1.91E+09 1.77E+08 0.092579

17 16.77525 1395.422 0.228164 538095.5 50158.75 0.093215

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

174

18 13.98218 613.0596 0.263987 96426.79 7051.234 0.073125

19 32.14089 4032.785 0.462566 43194.88 5426.19 0.125621

20 25.56158 3918.489 0.373687 1.33E+10 1657462 0.000124

21 15.45524 657.5736 0.441197 826870.8 4546.162 0.005498

22 33.27938 6326.76 0.275952 364848.9 35669.1 0.097764

23 35.74576 7981.264 0.245051 885407.2 59120.89 0.066773

24 32.50158 4801.343 0.247711 7360406 994298.8 0.135087

25 33.92826 4693.048 0.208794 281955.3 16164.94 0.057332

Table 2: Information theoretic measures and basic measures

 Information Theoretic Measures Basic Measures

Dataset
Entropy of
Classes

Entropy of
Attributes

Mutual
Information of
Classes and
Attributes

Equivalent
Number of
Attributes

Noisiness
of
Attribute

Number
of
Samples

Number of
Attributes

Number
of Classes

1 1.604684 1.784163 0.460912 3.48154 2.87094 217573 115 5

2 2.107886 1.812993 0.784671 2.686332 1.310515 203095 115 5

3 2.121286 0.287287 1.248589 1.698946 -0.76991 200532 115 5

4 2.232657 0.184393 1.248475 1.788308 -0.85231 200130 115 5

5 2.321928 0.290485 1.014079 2.289691 -0.71355 200000 79 5

6 1.612421 1.946768 0.554126 2.909845 2.513222 54392 115 5

7 2.297753 1.772714 0.83368 2.756158 1.126372 51216 115 5

8 2.122432 0.288038 1.2495 1.698625 -0.76948 50062 115 5

9 2.230321 0.18498 1.24831 1.786672 -0.85182 50002 115 5

10 2.321928 0.290527 1.013625 2.290716 -0.71338 50000 79 5

11 2.321928 0.305334 1.043036 2.226125 -0.70726 200000 79 5

12 2.255648 0.232037 0.143471 15.72202 0.617314 74627 41 5

13 2.321928 0.180679 0.207006 11.2167 -0.12718 100000 85 5

14 2.321928 0.15053 0.18767 12.37239 -0.1979 100000 85 5

15 2.204004 0.224583 1.446916 1.523243 -0.84479 111001 29 5

16 2.263019 0.241172 1.594354 1.419395 -0.84873 169339 16 5

17 2.207921 0.423122 1.200392 1.839333 -0.64751 185124 41 5

18 1.852082 0.427514 0.946719 1.956317 -0.54843 65346 42 5

19 1.378527 0.382633 0.681698 2.022197 -0.43871 33820 78 3

20 1.875601 0.433882 0.982421 1.909162 -0.55835 88577 78 6

21 1.126466 0.391177 0.477067 2.361232 -0.18004 8215 78 5

22 1.467821 0.374083 0.786108 1.867201 -0.52413 142125 78 4

23 2.713882 0.163252 0.984771 2.755851 -0.83422 242787 81 8

24 1.2827 0.11735 0.479144 2.677065 -0.75508 60053 82 3

25 1.727957 0.117116 0.60713 2.846105 -0.8071 58418 81 4

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

175

Table 3: Accuracy of 13 ML-based detection algorithms over 25 datasets

Dataset KNN SVM DT SNN LDA NB LR BRNN GRU LSTM CNN DNN DBN

1 0.947 0.9345 0.999 0.9402 0.8728 0.573 0.9315 0.9631 0.9674 0.9534 0.9667 0.9471 0.8182

2 0.9865 0.9645 0.9996 0.9904 0.9462 0.8224 0.9548 0.9666 0.9682 0.9665 0.9817 0.9479 0.8898

3 0.9993 0.9234 0.9997 0.985 0.8773 0.8766 0.9125 0.9806 0.9916 0.9871 0.989 0.9926 0.8913

4 0.9985 0.9938 0.9998 0.9998 0.983 0.7994 0.9946 0.9963 0.9969 0.996 0.9996 0.9909 0.7812

5 0.7463 0.6796 0.74 0.7549 0.6653 0.6313 0.6794 0.7697 0.7718 0.7694 0.7657 0.7699 0.6028

6 0.9521 0.894 0.9982 0.9627 0.8921 0.6202 0.9498 0.9505 0.9306 0.9407 0.9585 0.9126 0.773

7 0.9811 0.9671 0.9986 0.9641 0.944 0.8596 0.9573 0.9466 0.9602 0.9593 0.9617 0.9443 0.8661

8 0.9963 0.912 0.9989 0.9889 0.8831 0.8735 0.9055 0.987 0.9842 0.9824 0.9873 0.9848 0.8694

9 0.9923 0.9892 0.9995 0.9932 0.9834 0.7054 0.9909 0.9942 0.9947 0.9951 0.9982 0.9843 0.7753

10 0.759 0.6734 0.7637 0.7243 0.6699 0.6271 0.68 0.7497 0.7446 0.7458 0.7335 0.7546 0.4654

11 0.92 0.8493 0.919 0.9055 0.8227 0.8179 0.8535 0.9192 0.9165 0.9259 0.9252 0.9171 0.7779

12 0.815 0.669 0.7313 0.6721 0.6671 0.5904 0.6693 0.6631 0.6604 0.6626 0.6627 0.6627 0.6077

13 0.9623 0.9457 0.988 0.9548 0.9265 0.5268 0.9464 0.9601 0.9628 0.9639 0.9528 0.9541 0.9162

14 0.9809 0.8467 0.9983 0.9638 0.8214 0.6781 0.8606 0.9564 0.9659 0.9634 0.9674 0.9574 0.8169

15 0.9956 0.993 0.9977 0.9957 0.9868 0.9955 0.9914 0.9939 0.996 0.9948 0.9957 0.9955 0.9939

16 0.9967 0.9896 0.9982 0.9948 0.9894 0.9935 0.9939 0.9936 0.9938 0.9942 0.9937 0.9926 0.994

17 0.7825 0.7594 0.806 0.8047 0.7272 0.6003 0.7658 0.8063 0.8168 0.8117 0.8092 0.8085 0.7477

18 0.8321 0.7925 0.8319 0.8524 0.7471 0.4128 0.7912 0.8701 0.8704 0.8711 0.8373 0.8582 0.6841

19 0.9981 0.972 0.9998 0.9971 0.9451 0.9934 0.9658 0.9985 0.9987 0.9982 0.9991 0.9935 0.8118

20 0.9972 0.965 0.9977 0.996 0.9379 0.9189 0.9601 0.9968 0.9977 0.9976 0.9976 0.9971 0.8986

21 0.912 0.9051 0.9108 0.9201 0.8848 0.8122 0.8961 0.9836 0.9726 0.9811 0.9653 0.9757 0.7292

22 0.9956 0.9713 0.9975 0.9927 0.9637 0.8605 0.9718 0.9992 0.9991 0.9976 0.9985 0.9956 0.9543

23 0.9017 0.8416 0.9033 0.9147 0.8178 0.7912 0.8997 0.9947 0.9913 0.9951 0.9951 0.995 0.9157

24 0.9994 0.9993 0.9997 0.9996 0.9979 0.9987 0.9992 0.9998 0.9998 0.9997 0.9998 0.9998 0.9993

25 0.9975 0.9985 0.9993 0.9987 0.9345 0.8195 0.9966 0.9984 0.9991 0.9991 0.9991 0.9994 0.9835

3.4.2. Analysis on detection metrics

Accuracy

The accuracy of the 13 algorithms over the 25 datasets is
shown in Table 3. In most of the cases, KNN, DT, SNN and
the deep neural model algorithms have significantly better
performance than the other algorithms, so we decide to
divide the algorithms into 2 groups: the shallow model
consisting of KNN, DT and SNN; and the deep model
consisting of CNN, DNN, BRNN, GRU and LSTM. We
calculate the average accuracy of detection algorithms of
each group for 25 datasets, and the accuracy difference of
the 2 groups for each dataset. If the accuracy difference

value is greater than 0, the shallow model is better; and if it
is less than 0, then the deep model is better.

Fig. 2 shows the effect of within-class variance on accuracy
difference between the shallow model and deep model
group of algorithms. When the within-class variance ranges
from 101 to 104.5, the shallow model has better accuracy by
up to 8%. But when the within-class variance continues to
increase to the range of 107.5-109, the deep model algorithms
outperform in terms of accuracy. It means, we’d better to
apply a detection algorithm of the shallow model group to
a dataset that has within-class variance in the range of [101
to 104.5] to achieve better accuracy.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

176

Fig. 2: Effect of within-class variance on detection accuracy

Fig. 3: Effect of between-class variance on accuracy difference

The findings above can also be applied for between-class
variance attribute of the datasets. As seen in Fig. 3, we
should apply detection algorithms of the deep model group
if the training dataset has between-class variance range
from 104 to 106-108. While the shallow model algorithms
should be applied to achieve better accuracy if the dataset
has the between-class variance values ranging from 100 to
104.

Precision, Recall, F1-score, AUC

In this section, we want to investigate how Precision, Recall,
F1-score and AUC of different detection algorithms vary
over the 25 datasets. Fig. 4 shows the mean performance
metrics of 13 algorithms overall 25 datasets. From left to
right are the plot of accuracy, macro precision, macro recall,
macro F1-score, macro AUC and micro AUC.

Fig. 4: Average performance of the 13 algorithms over all
datasets

These performance metrics can also be described
numerically in Table 4 and Table 5 that show the mean
macro precision and mean macro recall values of the 13
algorithms, respectively. It can be seen that Decision tree
algorithm always achieves the highest score, followed by
Bi-current neural network in second place. The Deep
learning model group (i.e. Long Short-Term Memory,
Convolutional Neural Network, Deep Neural Network for
Recall score and also Gated Recurrent Units for Precision
score) in third place. K-Nearest Neighbors gets the fourth
place.

Table 4: Mean macro precision

Algorithms
Mean macro
precision

Standard
deviation

KNN 0.906334 0.12429

SVM 0.865944 0.126722

DT 0.928545 0.114905

SNN 0.905582 0.113445

LDA 0.846959 0.120341

NB 0.754938 0.170322

LR 0.867847 0.141994

BIRNN 0.9249 0.095618

GRU 0.912585 0.104065

LSTM 0.910792 0.102177

CNN 0.918294 0.110328

DNN 0.913217 0.101871

DBN 0.72792 0.208663

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

177

Table 5: Mean macro recall

Algorithms
Mean macro
recall

Standard
deviation

KNN 0.902046 0.13998

SVM 0.839384 0.164799

DT 0.91879 0.128607

SNN 0.892313 0.153098

LDA 0.840608 0.140665

NB 0.769796 0.160368

LR 0.849119 0.160558

BIRNN 0.917347 0.125257

GRU 0.897161 0.135103

LSTM 0.905939 0.12934

CNN 0.906886 0.140209

DNN 0.901669 0.134277

DBN 0.712761 0.211599

With respect to F1-score, as shown in Table 6, the Decision
tree algorithm (DT) also has the highest mean macro F1
score (92%), followed by Bi-current neural network (91%),
K-nearest neighbors and convolutional neural network
(90%).

Table 6: Mean macro F1 score

Algorithms
Mean
macro F1

Standard
deviation

KNN 0.902045 0.135833

SVM 0.835152 0.16631

DT 0.921015 0.124675

SNN 0.885644 0.151851

LDA 0.828643 0.143769

NB 0.711445 0.186051

LR 0.847228 0.162234

BIRNN 0.912403 0.123942

GRU 0.891755 0.135984

LSTM 0.89846 0.127872

CNN 0.901051 0.141848

DNN 0.897381 0.132782

DBN 0.693995 0.222658

With respect to the AUC score, except Deep Belief Network,
the neural-network-based models (including both shallow
models and deep models) provide the best results: 98% for

macro average and 99% for micro average. K-Nearest
Neighbors, Logistic Regression and Support Vector
Machine, Linear Discriminant Analysis and Decision Tree
follow in the descending order.

Table 7: AUC score

Average
AUC
macro

AUC
macro
standard
deviation

Average
AUC
micro

AUC
micro
standard
deviation

KNN 0.975734 0.041656 0.987502 0.01905

SVM 0.971825 0.034548 0.982436 0.024198

DT 0.964422 0.058582 0.977233 0.034675

SNN 0.983121 0.028601 0.990764 0.018357

LDA 0.967906 0.038474 0.977425 0.028059

NB 0.939083 0.052421 0.941202 0.061316

LR 0.973842 0.035182 0.984041 0.02464

BIRNN 0.987053 0.023581 0.992149 0.017022

GRU 0.985026 0.026885 0.992042 0.017875

LSTM 0.983709 0.030532 0.991774 0.018853

CNN 0.984182 0.030828 0.991099 0.019323

DNN 0.984799 0.028502 0.99142 0.01819

DBN 0.565444 0.130193 0.578729 0.166229

From the results shown from Table 3 and Fig. 4 to Table 7,
we conclude that among of all classification algorithms,
Deep Belief Network and Naïve Bayes always keep the
worst performance. This can be explained due to the nature
of the algorithms. In Naïve Bayes, it assumes that every
attribute is independent of each other, hence the probability
that a point belongs to a class can be calculated through the
probability of that point’s attributes. But in fact, the mean
absolute correlation coefficient as seen in Table 1 varies
from 0.143 to 0.469, which negates the assumption. The
equation for Naïve Bayes is as follows:

𝑝ሺ𝑐|𝑥ሻ ൌ
𝑝ሺ𝑥|𝑐ሻ ∗ 𝑝ሺ𝑐ሻ

𝑝ሺ𝑥ሻ
ൌ

𝑝ሺ𝑐ሻ
𝑝ሺ𝑥ሻ

∗ ෑ𝑝ሺ𝑥௜|𝑐ሻ

where: 𝑐 is is the targeted class

 𝑥 is the data point

 i is the data point’s attribute index

Deep Belief Network consists of the layer of Restricted
Boltzmann machines, which can self-learn the pattern in the
unsupervised manner. In [20] , the authors stated that the
algorithm ignores the top-down inference, and it only learns
a layer of feature at a moment, never calibrates the low-level

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

178

parameter. This leads to incorrect representation of the input,
eventually wrong prediction.

3.4.3. Analysis on mean training time

Table 8: Average training time and accuracy of each algorithm

Algorithm

Average
training
time

Average
accuracy

Accuracy
standard
deviation

KNN 0.013997 0.937794 0.083374

SVM 25.06169 0.897184 0.106732

DT 2.524976 0.943016 0.092289

SNN 433.7381 0.930663 0.094895

LDA 0.807953 0.875488 0.106782

NB 0.122958 0.767922 0.162704

LR 18.47428 0.900716 0.104607

BIRNN 4475.73 0.93752 0.092374

GRU 3909.609 0.938038 0.092709

LSTM 4610.378 0.938064 0.092509

CNN 946.8942 0.937628 0.095822

DNN 1273.057 0.933238 0.091461

DBN 1760.674 0.822522 0.134453

In this section, we compare the average training time of
those 13 ML algorithms. For that, we run each algorithm
over the 25 datasets and take the training time average of
those 25 experiments. The results are shown in Table 8. Fig.
5 show the mean training time of all 13 algorithms compare
with the referenced algorithm - Long Short-Term Memory,
which has the highest average training time.

Fig. 5: Average training time of 13 algorithms by percentage
(compared to the longest training time of LSTM)

As can be seen in Fig. 5 and Table 8, the mean training time
of neural networks is much longer than those of shallow

models. Even SNN, which took the longest time to train
among the shallow models – is still more than twice as fast
as CNN, which has the shortest time to train among the deep
models. Some shallow models such as NB or KNN even
take less than 0.01% of the time that LSTM takes. And yet
none of the more complicated models outperforms the
Decision Tree at 94.3% accuracy. This proves that the
datasets are not complex enough to warrant the use of more
complex algorithms.

4. Discussion

The purpose of this work is to give an analysis for
researchers to preliminarily evaluate the classification
performance of the different machine-learning algorithms
for a certain network context and purpose, and with an
implicit network data set. Thereby, we can have a rough
prediction in advance which type of machine learning
algorithm should be suitable to deal with the
classification/attack detection task of a certain network
scenario.

We, therefore, analyze the data characteristics and try to
connect find a relationship of it to the detection performance
of various machine-learning classification algorithms. The
findings and insights on the relationships elaborated in our
paper could be used to give some rough guidance which
algorithm should be suitable for a certain training data set.

From our experiments and analyses, no conclusive
relationship between non-discriminant measures (basic,
statistic and information theoretic) and the detection
performance has been able to be found.

We have found that Decision Tree has the best
performance on all metrics except AUC on experimental
datasets, and also has a much shorter training time than
neural network approaches.

Deep learning models have much more flexibility, and
may perform better with hyperparameter optimization,
regularization or training data, and may have faster training
time with more powerful hardware such as GPU. However,
we doubt all that effort is worth it for these network datasets
that already perfom very well on much simpler algorithms.
The deep learning models perform better than the shallow
models at a specific range of within- and between- class
variance in terms of accuracy. Whilst the shallow models
outperform in another range. Out of those 2 ranges, these
two groups of algorithms perform roughly the same. The
reasons could be:
 If the variances are too low, the datasets maybe too

simple and all algorithms can perfom well

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

179

 If these variances are high, the deep learning models
are weaker at picking up the slight extra complexity
possibly due to inefficient optimization or having too
many parameters which leads to overfitting, and thus
underperforming the shallow ones.

 If the variances then go higher, the shallow models
will have difficulty formulating more complex
underlying relationships that the deep models can now
detect due to their higher number of parameters, thus
deep models now outperform shallow ones.

 Finally, if the variances are too high, both types of
models will face too much difficulty in the
classification task, and their performances are about
similar again. Though, we think that with more tuning,
deep models will perform better.

In conclusion, within- and between-class variance may
be good indicators of the complexity of a dataset. The Deep
models will be good for more complex datasets and have
much more room for expansion, however they will require
a lot of processing power, as well as optimization efforts.
The Shallow models should be used if the dataset is simple,
if short training time is required, if thorough model
optimization cannot be done, or simply if they perform well
enough.

At the bottom line, more conclusions could be derived
from our results, and in the future, we would like to test on
more datasets and metrics to find more trends and make
better recommendations.

Acknowledgments

This research is funded by the Hanoi University of Science
and Technology (HUST) under project number T2020-
SAHEP-010. We also thank for the technical contribution
of Miss. Nguyen Thuy Linh – our student.

References

[1] C.E. Brodley, Addressing the selective superiority problem:
Automatic algorithm/model class selection, in: Proceedings
of the tenth international conference on machine learning,
1993, pp. 17–24.

[2] P. Brazdil, J. Gama, B. Henery, Characterizing the
applicability of classification algorithms using meta-level

learning, in: Proc. European Conference on Machine
Learning, 1994,

[3] Ricardo Vilalta, Christophe Giraud-Carrier, Pavel Brazdil,
Carlos Soares: Using meta-learning to support data Mining.
IJCSA. 1(1), pp.31-45, 2004

[4] C. Giraud-Carrier, R.Vilalta and P. Brazdil, ―Introduction
to the special issue on meta-learning‖, Machine Learning 54,
187–193, 2004.

[5] G. Wang, Q. Song, X. Zhu, An improved data
characterization method and its application in classification
algorithm recommendation, Appl. Intell. 43 (4) (2015) 892–
912.

[6] R. Ali, S. Lee, T.C. Chung, Accurate multi-criteria decision
making methodology for recommending machine learning
algorithm, Expert Syst. Appl. 71 (4) (2017) 257–278

[7] S. Gore, N. Pise, Dynamic algorithm selection for data
mining classification, Int. J. Sci. Eng. Res. 4 (12) (2013)
2029–2033

[8] D.H. Wolpert, W.G. Macready: No free lunch theorem for
search, Technical Report SFI-TR-05-010, Santa Fe Institute,
Santa Fe, NM, 1995

[9] I. Ullah and Q. H. Mahmoud, A Technique for Generating a
Botnet Dataset for Anomalous Activity Detection in IoT
Networks, vol. 2020-October, no. April 2021. Springer
International Publishing, 2020

[10] Y. Meidan et al., “N-BaIoT-Network-based detection of IoT
botnet attacks using deep autoencoders,” IEEE Pervasive
Comput., vol. 17, no. 3, pp. 12–22, 2018, doi:
10.1109/MPRV.2018.03367731.

[11] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai,
“Kitsune: An Ensemble of Autoencoders for Online
Network Intrusion Detection,” no. February, pp. 18–21,
2018, doi: 10.14722/ndss.2018.23204.

[12] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E.
Cambiaso, “Mqttset, a new dataset for machine learning
techniques on mqtt,” Sensors (Switzerland), vol. 20, no. 22,
pp. 1–17, 2020, doi: 10.3390/s20226578.

[13] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis,
and X. Bellekens, “Machine Learning Based IoT Intrusion
Detection System: An MQTT Case Study (MQTT-IoT-
IDS2020 Dataset),” Lect. Notes Networks Syst., vol. 180,
pp. 73–84, 2021, doi: 10.1007/978-3-030-64758-2_6.

[14] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and Adna
N Anwar, “TON-IoT telemetry dataset: A new generation
dataset of IoT and IIoT for data-driven intrusion detection
systems,” IEEE Access, vol. 8, pp. 165130–165150, 2020,
doi: 10.1109/ACCESS.2020.3022862.

[15] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive
data set for network intrusion detection systems (UNSW-
NB15 network data set),” 2015 Mil. Commun. Inf. Syst.
Conf. MilCIS 2015 - Proc., 2015, doi:
10.1109/MilCIS.2015.7348942.

[16] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
traffic characterization,” ICISSP 2018 - Proc. 4th Int. Conf.
Inf. Syst. Secur. Priv., vol. 2018-January, no. Cic, pp. 108–
116, 2018, doi: 10.5220/0006639801080116.

[17] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A.
Ghorbani, “Developing realistic distributed denial of service
(DDoS) attack dataset and taxonomy,” Proc. - Int. Carnahan

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

180

Conf. Secur. Technol., vol. 2019-October, no. Cic, 2019, doi:
10.1109/CCST.2019.8888419.

[18] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A.
Ghorbani, “Characterization of tor traffic using time based
features,” ICISSP 2017 - Proc. 3rd Int. Conf. Inf. Syst. Secur.
Priv., vol. 2017-January, no. January, pp. 253–262, 2017,
doi: 10.5220/0006105602530262.

[19] Bill Fulkerson (1995) Machine Learning, Neural and
Statistical Classification, Technometrics, 37:4, 459, DOI:
10.1080/.1995.10484383

[20] Neelam Agarwalla et al, "Deep Learning using Restricted
Boltzmann Machines" in International Journal of Computer
Science and Information Technologies, Vol.7(3), 2016,
1552-1556

TRUONG THU HUONG received the
B.Sc.degree in electronics and
telecommunications from Hanoi University
of Science and Technology (HUST),
Vietnam, in 2001, the M.Sc. degree in
information and communication systems
from the Hamburg University of
Technology, Germany,in 2004, and the
Ph.D. degree in telecommunications from

the University of Trento, Italy, in 2007. She came back to work for
Hanoi University of Science and Technology as a Lecturer, in
2009, and became an Associate Professor, in 2018. Her research
interests are oriented toward network security, artificial
intelligence, traffic engineering in next generation networks,
QoE/QoS guarantee for network services, green networking, and
development of the Internet of Things ecosystems and applications.

TA PHUONG BAC received the
B.Sc.degree in Electronics and
Telecommunications from the Hanoi
University of Science and Technology
(HUST), Vietnam, in 2020. He is currently
a Master’s student at Soongsil University
(SSU), Korea. He has been also a Research
Assistant in the Distributed Cloud and
Network Laboratory, School of

Electronic Engineering, SSU, Korea. His research interests
include Computer Networking, Cloud-Edge Computing, and
Artificial Intelligence.

BUI DOAN THANG is a senior student of
the talented program in Electronics and
Telecommunications Engineering, School
of Electronics and Telecommunications,
Hanoi University of Science and
Technology. Thang has been working at the
Future Internet Laboratory for 2 years. His
research interest includes IoT, network

security, machine learning/AI and its application

DAO MINH LONG is a senior student of
the talented program in Electronics and
Telecommunications Engineering, School
of Electronics and Telecommunications,
Hanoi University of Science and
Technology. Long has been a research
assistant at the Future Internet Laboratory
for 2 years. His research interest includes
IoT, network security, machine learning/AI

and its application.

NGUYEN MINH DAN is a junior student
of the talented program in Electronics and
Telecommunications Engineering, School
of Electronics and Telecommunications,
Hanoi University of Science and
Technology. Working as a research
assistant at the Future Internet Laboratory
since 2020, he shows his interest in research
areas of network security and Internet of

Things.

LE ANH QUANG is a junior student of the
talented program in Electronics and
Telecommunications Engineering, School
of Electronics and Telecommunications,
Hanoi University of Science and
Technology. Quang has been a research
assistant at the Future Internet Laboratory
since 2020. His field of interest includes
Deep Learning and Edge Computing.

NGUYEN VIET HOANG is a student in
Electronics and Telecommunications
Engineering, School of Electronics and
Telecommunications, Hanoi University of
Science and Technology. Hoang has been a
research assistant at the Future Internet
Laboratory since 2020. His field of interest
includes Machine Learning and Network
security.

