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Summary 
Since machine learning was invented, there have been many 
different machine learning-based algorithms, from shallow 
learning to deep learning models, that provide solutions to the 
classification tasks. But then it poses a problem in choosing a 
suitable classification algorithm that can improve the 
classification/detection efficiency for a certain network context. 
With that comes whether an algorithm provides good performance, 
why it works in some problems and not in others. In this paper, we 
present a data-centric analysis to provide a way for selecting a 
suitable classification algorithm. This data-centric approach is a 
new viewpoint in exploring relationships between classification 
performance and facts and figures of data sets. 
Key words: 
Machine learning, deep learning, shallow learning, datasets. 

1. Introduction 

Data and model are essential components that play a 
significant role in building an artificial intelligence (AI) 
system applied in many different fields such as 
telecommunication, cyber-security, recommendation 
systems, web, finance, ecology, biology, etc. Conventional 
machine learning algorithms learn from training data and 
make predictions by optimizing model parameters, which is 
an iterative process. The training data is processed multiple 
times, and the model parameters update iteratively. In this 
iterative process, there are two primary directions to achieve 
a good AI solution: the model-centric and data-centric 
approach. A model-centric view involves designing 
empirical tests around the model to improve performance 
and finding the exemplary model architecture and training 
process in an ample space of possibilities. 

 In contrast, the data-centric approach involves 
systematically changing or enhancing the quality of the 
training data sets to improve AI system performance. In the 
AI community, most research efforts focus on model-
centric AI by developing new algorithms to replace existing 
algorithms or using a heuristic approach from empirical 
knowledge to choose a suitable algorithm [1] . In paper [1] , 
the author proposed a method to select the best algorithms 
from candidate algorithms using a heuristic approach, 
automatically performed by theoretically analyzing the 

applicability of these classification algorithms. However, 
such theory-based methods require more background 
knowledge from a more specific field. Furthermore, not all 
possible applications of classification algorithms are 
possibly practically feasible. 

 In the same direction, Brazdil et al. [2]  combine 
statistics and information theory measures to extract meta-
features for different data sets. These features serve the 
execution process on many algorithms to determine the 
algorithm's applicability. The final decision is made based 
on a rule-based model with a set of rules. 

Meta-learning [3] is a framework developed in the 
field of supervised machine learning with the aim of 
supporting solving important problems in the field of 
machine learning as classifier selection [4] . This method 
will provide a meta-learning framework to map an existing 
problem or task to one or several algorithms that are best 
suited to solve the problem.  

However, the fact that there are many available 
classification algorithms creates a challenge for users in 
choosing and using an appropriate algorithm for their attack 
classification task. Therefore, the challenge is to explore the 
relationship of the performance of the algorithms with the 
characteristics of the training datasets and then choose an 
algorithm that best fits the data. This is a direction that has 
received the attention of many researchers many years ago 
[5] [6] [7] . However, these methods need to be updated and 
adapted to the wide popularity and development of artificial 
intelligence-based technologies and the increasing number 
of machine learning algorithms and the number of forms. 

According to the “No Free Lunch” theory [8] , in the 
machine learning context, that has depicted that there is no 
single algorithm applicable to all different data sets. This 
theory implies that the performances of all algorithms are 
equally good if tested over a sufficiently large number of 
datasets. In other words, there is not a magic algorithm that 
is the best in every situation, and no general 
recommendations can be made for arbitrary data. Data 
characteristics or dataset meta-features always affect the 
actual performance of a classifier.  

In this paper, we do not propose a set of classifiers to 
choose the best algorithm for the classification problem. 
Instead, the content of the study provides readers with a new 
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data-centric analysis to support choosing a classification 
algorithm suitable for a certain type of training data being 
used. We review some of the available classification 
algorithms that can be applied in cybersecurity; and the 
results of analysis, evaluation, and conclusions are made on 
the dataset of actual cyber-attacks. 

 
The rest of our paper is organized as follows: 

Background on data characteristics that elaborates data 
parameters used in our study are provided in Section 2. In 
Section 3, we elaborate how we set up our experiments in 
terms of a machine learning algorithms and training data 
sets. Then the facts and figures on data characteristics as 
well as detection performance are given and analyzed. 
Finally, some discussion is given in Section 4. 

2. Background on data characteristics 

To better understanding why an algorithm has better 
performance on a dataset over other algorithms, we need to 
examine the characteristics of a dataset. This paper 
introduces three types of data characteristics: Statistical 
measures, Discriminated measures and Information-
theoretic measures. 

2.1. Statistical measures 

Skewness is the measure of the asymmetry of a probability 
distribution. A variable with normal distribution will have 
0 skewness. On the other hand, a positive or negative 
skewness indicates the most probable value will be on the 
left or right-hand side, respectively. Skewness is calculated 
as followed: 

𝑆𝑘𝑒𝑤 ൌ  ෍
|𝑥௜ െ 𝑚|ଷ

𝑁 ∗ 𝛿ଷ

ே

௜ୀଵ

 

Kurtosis is the measure of whether a variable has heavy-
tailed or light-tailed distribution. Larger kurtosis means 
heavier tail and less concentrated central. A normal 
distribution variable has zero kurtosis. Kurtosis is 
calculated as: 

𝐾𝑢𝑟𝑡 ൌ  ෍
ሺ𝑥௜ െ𝑚ሻସ

𝑁 ∗ 𝛿ସ
െ 3

ே

௜ୀଵ

 

Where: 

 N is the sample size 
 𝑥௜  is the sample value of a variable 
 m is the average value of that variable 
 δ is the standard deviation 

Mean absolute correlation coefficient: The last statistical 
measure is the mean absolute correlation coefficient. The 
correlation is a metric calculated between two variables and 
represents the linearity of their relationship. The closer the 
absolute value is to 1, the stronger the correlation between 
the two variables. The mean absolute correlation coefficient 
is the absolute value of the correlations averaged over all 
pairs of features and all classes. In this research, we use 
Pearson’s Correlation Coefficient, which can be computed 
as: 

𝑃𝐶𝐶 ൌ
∑ ሺ𝑥௜ െ  µ௫ሻ൫𝑦௜ െ µ௬൯
ே
௜ୀଵ

ඥ∑ ሺ𝑥௜ െ µ௫ሻଶே
௜ୀଵ ∗ ට∑ ൫𝑦௜ െ µ௬൯

ଶே
௜ୀଵ

 

Where 𝑥௜ and 𝑦௜ are individual datapoints of the two 
variables and µ௫ and µ௬ are their mean, respectively. 

2.2. Discriminant measures 

The discriminant measures are based on Linear 
Discriminant Analysis, in which the classifier tries to 
transform the data to another dimension where it would be 
easier to classify the data by minimizing within-between 
variance ratio. The three measures are: 

Within-class variance 

𝑠ௐ ൌ  𝑡𝑟𝑎𝑐𝑒ሺ𝑾்𝑺ௐ𝑾ሻ 

Between class variance 

𝑠஻ ൌ  𝑡𝑟𝑎𝑐𝑒ሺ𝑾்𝑺஻𝑾ሻ 

Within/between class variance ratio 

𝑅 ൌ  
𝑠ௐ
𝑠஻

 

Where: 

 𝑺ௐ ൌ  ∑ ∑ ሺ𝒙௡ െ𝒎௞ሻሺ𝒙௡ െ𝒎௞ሻ்௡ఢ𝒞ೖ ,஼
௞ୀଵ  

 𝑺஻  ൌ  ∑ 𝑁௞ሺ𝒎௞ െ𝒎ሻሺ𝒎௞ െ𝒎ሻ் ,஼
௞ୀଵ   

 W = 𝑎𝑟𝑔max
୛

𝑅 

 C : the number of classes. 
 𝒞௞ : the indexes of all the datapoints in class k. 
 𝑁௞ : the number of datapoints in class k. 
 𝒙௡ : a datapoint with index n.  
 𝒎 : the mean vector of all data.  
 𝒎௞ : the mean vector of all data in class k. 

2.3. Information theoretic measures 

The following information theoretic measures [19] are 
normally used for categorical or discreate value. To use the 
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following characteristics for continuous cases, we can 
divide the variable value into a number of partitions and 
treat the partition as a discreate value.  

Entropy of attributes: 

𝐻௑ ൌ  െ෍𝑞௜ ∗ log ሺ𝑞௜ሻ 

Where: 𝑞௜ is the probability of the ith possible value 

Entropy of class: 

𝐻஼ ൌ  െ෍𝑐௜ ∗ log ሺ𝑐௜ሻ 

Where: 𝑐௜ is the probability of the ith class. 

Joint entropy of class and attribute: 

𝐻஼,௑ ൌ  െ෍𝑝௜௝ ∗ log ሺ𝑝௜௝ሻ
௜,௝

 

Where 𝑝௜௝ is the probability that attribute X has ith value 
and belong in jth class. 

Mutual information of class and attribute: 

𝑀஼,௑ ൌ  𝐻஼ ൅  𝐻௑ െ  𝐻஼,௑ 

Equivalent number of attributes: 

𝐸𝑞𝐴𝑡𝑡𝑟 ൌ  
𝐻௖
𝑀ഥ஼,௑

 

Noisiness of attributes: 

𝑁𝑜𝑖𝑠𝑖𝑛𝑒𝑠𝑠 ൌ  
𝐻ഥ௑
𝑀ഥ஼,௑

െ 1 

3. Performance of anomaly detection schemes 

3.1 Experimental setup on machine learning-based 
detection algorithms 

To evaluate the effects of various characteristics to the 
classification process, we run 13 Machine-learning 
algorithms on top of those 25 data sets (the datasets will be 
elaborated in the following subsection). The 13 algorithms 
include both shallow-model algorithms and deep-model 
algorithms, as follows: 

 Shallow model: Decision tree, Linear Discriminant 
Analysis, K-Nearest Neighbors, Support Vector 
Machine, Shallow Neural Network, Naïve Bayes, 
Logistic Regression 

 Deep model: Bidirectional-recurrent neural network, 
Gated Recurrent Units, Long Short-term Memory, 
Deep Neural Network, Convolutional Neural Network, 
Deep Belief Network. 

 

Fig.  1: Taxonomy of the ML algorithms used in our analysis 

3.2  Experimental setup on Data sets 

To evaluate and assess detection performance of the 13 
machine-learning-based detection schemes, originally, 7 
different datasets of network traffic collected from IoT 
devices are selected as follows: 

 IoTID20 [9] : a dataset stems from a IoT environment 
of two typical smart home devices being attacked by 
other devices in the network. This csv-formatted 
dataset includes 83 network features along with label 
feature of normal and eight different attack types, 
ranging from Denial of Service, Mirai, Man in the 
Middle to Scan. 
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 N-BaIoT [10] : a dataset about a network constitutes 
IoT devices in enterprise context. In this dataset, a 
total of 115 features about traffic statistics over 5 
temporal windows were extracted when two common 
IoT botnets, namely BASHLITE and Mirai, were 
injected into the network to execute multiple attacks. 

 Kitsune [11] : a NIDS dataset with 115 statistical 

features over different time windows containing 
traffic of two networks. A surveillance network 
consists of two separate four-camera clusters, nine 
different attack scenarios of type Recon, Man in the 
Middle, Denial of Service and Botnet Malware were 
recorded. In the second network, this is an IoT 
network of 9 IoT devices and 3 personal computers in 
which Mirai botnet malware attack was conducted. 

 MQTTset [12] : an IoT cyber-security dataset with 60 
features that focuses on communications using the 
Message Queue Telemetry Transport (MQTT) 
protocol. The network consists of 8 sensors, each of 
which directly communicates with the MQTT broker 
to simulate a smart house scenario. MQTTset includes 
legitimate network data and five categories of MQTT-
based cyber-attacks. 

 MQTT-IoT-IDS2020 [13]: an IoT dataset simulating 
a realistic MQTT IoT network, which includes 12 
sensors, an MQTT broker, a camera feed server, and 
an attacker machine. MQTT-IoT-IDS2020 consists of 
1 normal scenario and 4 attack scenarios were 
collected separately with the normal scenario in the 
background. 

 TON_IoT [14] : a telemetry dataset in the context of 
Industrial IoT, derived from a medium-scale IoT 
testbed with seven IoT and Industrial IoT sensors. The 
dataset includes normal network data and 9 types of 
cyber-attacks, which were executed against various 
sensors across the network. 

 UNSW-NB15 [15] : a dataset created for Network 
Intrusion Detection Systems, addressing the problems 
of the existing datasets such as duplicated samples, 
unrepresentative training sets and test sets, and the 
lack of low-footprint cyberattacks. 100 GBs of hybrid 
(normal and attack scenarios) network data was 
generated and passed through feature extraction tools 
to create the dataset. 

 CIC-IDS2017[16] : a NIDS dataset generated from 
and captured in a comprehensive dataset infrastructure, 
which was separated into two distinct networks: the 
Victim-Network and the Attack-Network. The B-

Profile system was utilized to emulate realistic benign 
traffic in the background while one of six types of 
cyberattacks was being executed against the Victim-
Network.  

 CIC-DDoS2019 [17] : a dataset generated from an 
analogous two-network testbed as CIC-IDS2017 with 
differences of Victim-Network consisting of one 
server, one firewall, two switches and four PCs while 
Attack-Network deployed by third party tools 
executing a disparate group of 12 DDoS attacks. The 
subsequent dataset comprises 80 different flow-based 
features extracted using the CICFlowMeter tool [18] . 

To investigate the relationship between the characteristics 
of a data set and the detection performance (e.g accuracy, 
F1-score, Precision, Recall, AUC) of the 13 popular ML-
based detection algorithms aforementioned. We increase 
the number of datasets and diversify the data characteristics 
in our experiments by splitting the 9 original datasets into 
25 smaller ones. Each dataset has its own characteristics in 
basic measures such as the number of samples (from 8125 
to 242787 samples), the number of classes (3-8 classes), and 
in other measures (such as statistic measures, discriminant 
measures, etc.) 

3.3. Experimental setup on detection parameters  
 

In this subsection, we describe a set of metrics used in 
our evaluation of machine learning algorithms’ 
classification performance. The first metric is training time, 
which is the duration a specific algorithm uses for the model 
building phase, measured in minutes. 
 
The second parameter is Accuracy, which is the fraction of 
total samples correctly classified by classifier model: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 

 
The third metric used is macro-averaged precision 
calculating the average precision, in which each class is 
treated equally to others: 
 

𝑀𝑎𝑐𝑟𝑜 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
1
𝑁
෍𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௜

ேିଵ

௜ୀ଴

 

where N is the total number of classes and i is class index. 
 
Likewise, macro-averaged recall and macro-averaged F1-
score are computed by averaging recall and F1-score of 
each individual class, respectively: 
 

𝑀𝑎𝑐𝑟𝑜 𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
1
𝑁
෍𝑅𝑒𝑐𝑎𝑙𝑙௜

ேିଵ

௜ୀ଴

 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021 
 

 

173

 

𝑀𝑎𝑐𝑟𝑜 𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ  
1
𝑁
෍𝐹1 𝑆𝑐𝑜𝑟𝑒௜

ேିଵ

௜ୀ଴

 

where N is the total number of classes and i is class index. 
 
In each class, the corresponding metrics are calculated as 
follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ൅ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ൅ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 ൌ 2 ൈ
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙

 

 
Where: 
 
 TruePositive: number of outcomes correctly predicted 

as positive. 
 FalsePositive: number of wrong predictions of actual 

negative as positive. 
 FalseNegative: number of wrong predictions of actual 

positive as negative. 
 

The final metric used for this performance analysis is Area 
Under the Receiver Operating Characteristic Curve (i.e. 
AUC), computed in both micro-averaged and macro-
averaged manner. While micro-averaged is computed by 
treating each element of the label indicator matrix as a 
binary prediction, macro-averaged gives equal weight to the 
classification of each label as aforementioned calculations. 
These metrics computation will help us to assess the overall 
performance of each machine algorithm over a collection of 
datasets in the following sections. 

3.4 Performance Analysis 

3.4.1 Findings on dataset characteristics 

Table 1  shows the characteristics of the statistic measures 
(e.g. Skewness, Kurtosis, Correlation Coefficient) and 
discriminant measures (Within-class variance, Between 
Class variance, BW class variance ratio) of the 25 datasets 
in our experiment.   

While Table 2  shows the findings on the Information 
theoretic measures (e.g.    Entropy of classes, Entropy of 
attributes, Mutual information of classes and attributes, 
Equivalent number of attributes, Noisiness of attribute) and   
basic measures (e.g. Number of samples, Number of 
attributes, Number of classes) of those datasets.

Table 1: Statistic measures and discriminant measures 

 Statistic Measures Discriminant Measures 

Dataset 
Mean Absolute 
Skewness Mean Kurtosis 

Mean Absolute 
Correlation 
Coefficient 

Within Class 
Variance 

Between Class 
Variance 

BW Class 
Variance Ratio 

1 14.1568 2375.93 0.383013 102.028 8.372598 0.082062 

2 3.470468 169.5141 0.34325 83.65785 8.244138 0.098546 

3 13.10017 552.5776 0.249309 159645.5 16121.32 0.100982 

4 43.2335 17777.06 0.312516 2.69661 0.255143 0.094616 

5 33.82218 5370.224 0.242386 277812.5 27568.15 0.099233 

6 9.656811 1064.526 0.377135 78.26708 6.406469 0.081854 

7 2.900592 160.436 0.353527 21.6827 2.17989 0.100536 

8 12.30063 423.8788 0.272488 51359.67 5204.035 0.101325 

9 5.46019 536.5678 0.328734 1.25E-10 1.18E-11 0.09484 

10 21.92411 1940.541 0.258087 61195.58 6072.069 0.099224 

11 31.12854 5703.112 0.252651 289149.2 28714.34 0.099306 

12 4.47841 63.14469 0.329684 17555.54 1351.986 0.077012 

13 78.96164 15762.92 0.14306 25950.51 2379.746 0.091703 

14 80.41875 16583.36 0.155178 18545.02 1747.006 0.094203 

15 46.64629 8920.242 0.468853 1.34E+10 1.08E+09 0.08033 

16 22.22354 1882.079 0.458282 1.91E+09 1.77E+08 0.092579 

17 16.77525 1395.422 0.228164 538095.5 50158.75 0.093215 
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18 13.98218 613.0596 0.263987 96426.79 7051.234 0.073125 

19 32.14089 4032.785 0.462566 43194.88 5426.19 0.125621 

20 25.56158 3918.489 0.373687 1.33E+10 1657462 0.000124 

21 15.45524 657.5736 0.441197 826870.8 4546.162 0.005498 

22 33.27938 6326.76 0.275952 364848.9 35669.1 0.097764 

23 35.74576 7981.264 0.245051 885407.2 59120.89 0.066773 

24 32.50158 4801.343 0.247711 7360406 994298.8 0.135087 

25 33.92826 4693.048 0.208794 281955.3 16164.94 0.057332 
 

Table 2: Information theoretic measures and basic measures 

 Information Theoretic Measures Basic Measures 

Dataset 
Entropy of 
Classes 

Entropy of 
Attributes 

Mutual 
Information of 
Classes and 
Attributes 

Equivalent 
Number of 
Attributes 

Noisiness 
of 
Attribute 

Number 
of 
Samples 

Number of 
Attributes 

Number 
of Classes 

1 1.604684 1.784163 0.460912 3.48154 2.87094 217573 115 5 

2 2.107886 1.812993 0.784671 2.686332 1.310515 203095 115 5 

3 2.121286 0.287287 1.248589 1.698946 -0.76991 200532 115 5 

4 2.232657 0.184393 1.248475 1.788308 -0.85231 200130 115 5 

5 2.321928 0.290485 1.014079 2.289691 -0.71355 200000 79 5 

6 1.612421 1.946768 0.554126 2.909845 2.513222 54392 115 5 

7 2.297753 1.772714 0.83368 2.756158 1.126372 51216 115 5 

8 2.122432 0.288038 1.2495 1.698625 -0.76948 50062 115 5 

9 2.230321 0.18498 1.24831 1.786672 -0.85182 50002 115 5 

10 2.321928 0.290527 1.013625 2.290716 -0.71338 50000 79 5 

11 2.321928 0.305334 1.043036 2.226125 -0.70726 200000 79 5 

12 2.255648 0.232037 0.143471 15.72202 0.617314 74627 41 5 

13 2.321928 0.180679 0.207006 11.2167 -0.12718 100000 85 5 

14 2.321928 0.15053 0.18767 12.37239 -0.1979 100000 85 5 

15 2.204004 0.224583 1.446916 1.523243 -0.84479 111001 29 5 

16 2.263019 0.241172 1.594354 1.419395 -0.84873 169339 16 5 

17 2.207921 0.423122 1.200392 1.839333 -0.64751 185124 41 5 

18 1.852082 0.427514 0.946719 1.956317 -0.54843 65346 42 5 

19 1.378527 0.382633 0.681698 2.022197 -0.43871 33820 78 3 

20 1.875601 0.433882 0.982421 1.909162 -0.55835 88577 78 6 

21 1.126466 0.391177 0.477067 2.361232 -0.18004 8215 78 5 

22 1.467821 0.374083 0.786108 1.867201 -0.52413 142125 78 4 

23 2.713882 0.163252 0.984771 2.755851 -0.83422 242787 81 8 

24 1.2827 0.11735 0.479144 2.677065 -0.75508 60053 82 3 

25 1.727957 0.117116 0.60713 2.846105 -0.8071 58418 81 4 
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Table 3: Accuracy of 13 ML-based detection algorithms over 25 datasets 

Dataset KNN SVM DT SNN LDA NB LR BRNN GRU LSTM CNN DNN DBN 

1 0.947 0.9345 0.999 0.9402 0.8728 0.573 0.9315 0.9631 0.9674 0.9534 0.9667 0.9471 0.8182 

2 0.9865 0.9645 0.9996 0.9904 0.9462 0.8224 0.9548 0.9666 0.9682 0.9665 0.9817 0.9479 0.8898 

3 0.9993 0.9234 0.9997 0.985 0.8773 0.8766 0.9125 0.9806 0.9916 0.9871 0.989 0.9926 0.8913 

4 0.9985 0.9938 0.9998 0.9998 0.983 0.7994 0.9946 0.9963 0.9969 0.996 0.9996 0.9909 0.7812 

5 0.7463 0.6796 0.74 0.7549 0.6653 0.6313 0.6794 0.7697 0.7718 0.7694 0.7657 0.7699 0.6028 

6 0.9521 0.894 0.9982 0.9627 0.8921 0.6202 0.9498 0.9505 0.9306 0.9407 0.9585 0.9126 0.773 

7 0.9811 0.9671 0.9986 0.9641 0.944 0.8596 0.9573 0.9466 0.9602 0.9593 0.9617 0.9443 0.8661 

8 0.9963 0.912 0.9989 0.9889 0.8831 0.8735 0.9055 0.987 0.9842 0.9824 0.9873 0.9848 0.8694 

9 0.9923 0.9892 0.9995 0.9932 0.9834 0.7054 0.9909 0.9942 0.9947 0.9951 0.9982 0.9843 0.7753 

10 0.759 0.6734 0.7637 0.7243 0.6699 0.6271 0.68 0.7497 0.7446 0.7458 0.7335 0.7546 0.4654 

11 0.92 0.8493 0.919 0.9055 0.8227 0.8179 0.8535 0.9192 0.9165 0.9259 0.9252 0.9171 0.7779 

12 0.815 0.669 0.7313 0.6721 0.6671 0.5904 0.6693 0.6631 0.6604 0.6626 0.6627 0.6627 0.6077 

13 0.9623 0.9457 0.988 0.9548 0.9265 0.5268 0.9464 0.9601 0.9628 0.9639 0.9528 0.9541 0.9162 

14 0.9809 0.8467 0.9983 0.9638 0.8214 0.6781 0.8606 0.9564 0.9659 0.9634 0.9674 0.9574 0.8169 

15 0.9956 0.993 0.9977 0.9957 0.9868 0.9955 0.9914 0.9939 0.996 0.9948 0.9957 0.9955 0.9939 

16 0.9967 0.9896 0.9982 0.9948 0.9894 0.9935 0.9939 0.9936 0.9938 0.9942 0.9937 0.9926 0.994 

17 0.7825 0.7594 0.806 0.8047 0.7272 0.6003 0.7658 0.8063 0.8168 0.8117 0.8092 0.8085 0.7477 

18 0.8321 0.7925 0.8319 0.8524 0.7471 0.4128 0.7912 0.8701 0.8704 0.8711 0.8373 0.8582 0.6841 

19 0.9981 0.972 0.9998 0.9971 0.9451 0.9934 0.9658 0.9985 0.9987 0.9982 0.9991 0.9935 0.8118 

20 0.9972 0.965 0.9977 0.996 0.9379 0.9189 0.9601 0.9968 0.9977 0.9976 0.9976 0.9971 0.8986 

21 0.912 0.9051 0.9108 0.9201 0.8848 0.8122 0.8961 0.9836 0.9726 0.9811 0.9653 0.9757 0.7292 

22 0.9956 0.9713 0.9975 0.9927 0.9637 0.8605 0.9718 0.9992 0.9991 0.9976 0.9985 0.9956 0.9543 

23 0.9017 0.8416 0.9033 0.9147 0.8178 0.7912 0.8997 0.9947 0.9913 0.9951 0.9951 0.995 0.9157 

24 0.9994 0.9993 0.9997 0.9996 0.9979 0.9987 0.9992 0.9998 0.9998 0.9997 0.9998 0.9998 0.9993 

25 0.9975 0.9985 0.9993 0.9987 0.9345 0.8195 0.9966 0.9984 0.9991 0.9991 0.9991 0.9994 0.9835 

 

3.4.2.  Analysis on detection metrics 

Accuracy 

The accuracy of the 13 algorithms over the 25 datasets is 
shown in Table 3. In most of the cases, KNN, DT, SNN and 
the deep neural model algorithms have significantly better 
performance than the other algorithms, so we decide to 
divide the algorithms into 2 groups: the shallow model 
consisting of KNN, DT and SNN; and the deep model 
consisting of CNN, DNN, BRNN, GRU and LSTM. We 
calculate the average accuracy of detection algorithms of 
each group for 25 datasets, and the accuracy difference of 
the 2 groups for each dataset. If the accuracy difference 

value is greater than 0, the shallow model is better; and if it 
is less than 0, then the deep model is better. 

Fig.  2 shows the effect of within-class variance on accuracy 
difference between the shallow model and deep model 
group of algorithms. When the within-class variance ranges 
from 101 to 104.5, the shallow model has better accuracy by 
up to 8%. But when the within-class variance continues to 
increase to the range of 107.5-109, the deep model algorithms 
outperform in terms of accuracy. It means, we’d better to 
apply a detection algorithm of the shallow model group to 
a dataset that has within-class variance in the range of [101 
to 104.5] to achieve better accuracy. 
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Fig.  2: Effect of within-class variance on detection accuracy 

 
Fig.  3: Effect of between-class variance on accuracy difference 

The findings above can also be applied for between-class 
variance attribute of the datasets. As seen in Fig.  3, we 
should apply detection algorithms of the deep model group 
if the training dataset has between-class variance range 
from 104 to 106-108. While the shallow model algorithms 
should be applied to achieve better accuracy if the dataset 
has the between-class variance values ranging from 100 to 
104. 
 
Precision, Recall, F1-score, AUC 

In this section, we want to investigate how Precision, Recall, 
F1-score and AUC of different detection algorithms vary 
over the 25 datasets. Fig.  4 shows the mean performance 
metrics of 13 algorithms overall 25 datasets. From left to 
right are the plot of accuracy, macro precision, macro recall, 
macro F1-score, macro AUC and micro AUC. 

 

Fig.  4: Average performance of the 13 algorithms over all 
datasets 

These performance metrics can also be described 
numerically in  Table 4 and Table 5 that show the mean 
macro precision and mean macro recall values of the 13 
algorithms, respectively. It can be seen that Decision tree 
algorithm always achieves the highest score, followed by 
Bi-current neural network in second place. The Deep 
learning model group (i.e. Long Short-Term Memory, 
Convolutional Neural Network, Deep Neural Network for 
Recall score and also Gated Recurrent Units for Precision 
score) in third place. K-Nearest Neighbors gets the fourth 
place. 

Table 4: Mean macro precision 

Algorithms 
Mean macro 
precision 

Standard 
deviation 

KNN 0.906334 0.12429 

SVM 0.865944 0.126722 

DT 0.928545 0.114905 

SNN 0.905582 0.113445 

LDA 0.846959 0.120341 

NB 0.754938 0.170322 

LR 0.867847 0.141994 

BIRNN 0.9249 0.095618 

GRU 0.912585 0.104065 

LSTM 0.910792 0.102177 

CNN 0.918294 0.110328 

DNN 0.913217 0.101871 

DBN 0.72792 0.208663 
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Table 5: Mean macro recall 

Algorithms 
Mean macro 
recall 

Standard 
deviation 

KNN 0.902046 0.13998 

SVM 0.839384 0.164799 

DT 0.91879 0.128607 

SNN 0.892313 0.153098 

LDA 0.840608 0.140665 

NB 0.769796 0.160368 

LR 0.849119 0.160558 

BIRNN 0.917347 0.125257 

GRU 0.897161 0.135103 

LSTM 0.905939 0.12934 

CNN 0.906886 0.140209 

DNN 0.901669 0.134277 

DBN 0.712761 0.211599 
 

With respect to F1-score, as shown in Table 6, the Decision 
tree algorithm (DT) also has the highest mean macro F1 
score (92%), followed by Bi-current neural network (91%), 
K-nearest neighbors and convolutional neural network 
(90%). 

Table 6: Mean macro F1 score 

Algorithms 
Mean 
macro F1 

Standard 
deviation 

KNN 0.902045 0.135833 

SVM 0.835152 0.16631 

DT 0.921015 0.124675 

SNN 0.885644 0.151851 

LDA 0.828643 0.143769 

NB 0.711445 0.186051 

LR 0.847228 0.162234 

BIRNN 0.912403 0.123942 

GRU 0.891755 0.135984 

LSTM 0.89846 0.127872 

CNN 0.901051 0.141848 

DNN 0.897381 0.132782 

DBN 0.693995 0.222658 
 

With respect to the AUC score, except Deep Belief Network, 
the neural-network-based models (including both shallow 
models and deep models) provide the best results: 98% for 

macro average and 99% for micro average. K-Nearest 
Neighbors, Logistic Regression and Support Vector 
Machine, Linear Discriminant Analysis and Decision Tree 
follow in the descending order. 

Table 7: AUC score 

 

Average 
AUC 
macro 

AUC 
macro 
standard 
deviation 

Average 
AUC 
micro 

AUC 
micro 
standard 
deviation 

KNN 0.975734 0.041656 0.987502 0.01905 

SVM 0.971825 0.034548 0.982436 0.024198 

DT 0.964422 0.058582 0.977233 0.034675 

SNN 0.983121 0.028601 0.990764 0.018357 

LDA 0.967906 0.038474 0.977425 0.028059 

NB 0.939083 0.052421 0.941202 0.061316 

LR 0.973842 0.035182 0.984041 0.02464 

BIRNN 0.987053 0.023581 0.992149 0.017022 

GRU 0.985026 0.026885 0.992042 0.017875 

LSTM 0.983709 0.030532 0.991774 0.018853 

CNN 0.984182 0.030828 0.991099 0.019323 

DNN 0.984799 0.028502 0.99142 0.01819 

DBN 0.565444 0.130193 0.578729 0.166229 
 

From the results shown from Table 3 and Fig.  4 to Table 7, 
we conclude that among of all classification algorithms, 
Deep Belief Network and Naïve Bayes always keep the 
worst performance. This can be explained due to the nature 
of the algorithms. In Naïve Bayes, it assumes that every 
attribute is independent of each other, hence the probability 
that a point belongs to a class can be calculated through the 
probability of that point’s attributes. But in fact, the mean 
absolute correlation coefficient as seen in Table 1 varies 
from 0.143 to 0.469, which negates the assumption. The 
equation for Naïve Bayes is as follows:  

𝑝ሺ𝑐|𝑥ሻ ൌ  
𝑝ሺ𝑥|𝑐ሻ ∗ 𝑝ሺ𝑐ሻ

𝑝ሺ𝑥ሻ
ൌ  

𝑝ሺ𝑐ሻ
𝑝ሺ𝑥ሻ

∗  ෑ𝑝ሺ𝑥௜|𝑐ሻ 

where: 𝑐 is is the targeted class 

 𝑥 is the data point 

 i is the data point’s attribute index 

Deep Belief Network consists of the layer of Restricted 
Boltzmann machines, which can self-learn the pattern in the 
unsupervised manner. In [20] , the authors stated that the 
algorithm ignores the top-down inference, and it only learns 
a layer of feature at a moment, never calibrates the low-level 
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parameter. This leads to incorrect representation of the input, 
eventually wrong prediction. 

3.4.3. Analysis on mean training time 

Table 8: Average training time and accuracy of each algorithm 

Algorithm 

Average 
training 
time 

Average 
accuracy 

Accuracy 
standard 
deviation 

KNN 0.013997 0.937794 0.083374 

SVM 25.06169 0.897184 0.106732 

DT 2.524976 0.943016 0.092289 

SNN 433.7381 0.930663 0.094895 

LDA 0.807953 0.875488 0.106782 

NB 0.122958 0.767922 0.162704 

LR 18.47428 0.900716 0.104607 

BIRNN 4475.73 0.93752 0.092374 

GRU 3909.609 0.938038 0.092709 

LSTM 4610.378 0.938064 0.092509 

CNN 946.8942 0.937628 0.095822 

DNN 1273.057 0.933238 0.091461 

DBN 1760.674 0.822522 0.134453 

 

In this section, we compare the average training time of 
those 13 ML algorithms. For that, we run each algorithm 
over the 25 datasets and take the training time average of 
those 25 experiments. The results are shown in Table 8. Fig.  
5 show the mean training time of all 13 algorithms compare 
with the referenced algorithm - Long Short-Term Memory, 
which has the highest average training time. 
 

 

Fig.  5: Average training time of 13 algorithms by percentage 
(compared to the longest training time of LSTM) 

As can be seen in Fig.  5 and Table 8, the mean training time 
of neural networks is much longer than those of shallow 

models. Even SNN, which took the longest time to train 
among the shallow models – is still more than twice as fast 
as CNN, which has the shortest time to train among the deep 
models. Some shallow models such as NB or KNN even 
take less than 0.01% of the time that LSTM takes. And yet 
none of the more complicated models outperforms the 
Decision Tree at 94.3% accuracy. This proves that the 
datasets are not complex enough to warrant the use of more 
complex algorithms. 

4. Discussion 

The purpose of this work is to give an analysis for 
researchers to preliminarily evaluate the classification 
performance of the different machine-learning algorithms 
for a certain network context and purpose, and with an 
implicit network data set. Thereby, we can have a rough 
prediction in advance which type of machine learning 
algorithm should be suitable to deal with the 
classification/attack detection task of a certain network 
scenario.  
 

We, therefore, analyze the data characteristics and try to 
connect find a relationship of it to the detection performance 
of various machine-learning classification algorithms. The 
findings and insights on the relationships elaborated in our 
paper could be used to give some rough guidance which 
algorithm should be suitable for a certain training data set. 
 

From our experiments and analyses, no conclusive 
relationship between non-discriminant measures (basic, 
statistic and information theoretic) and the detection 
performance has been able to be found. 
 

We have found that Decision Tree has the best 
performance on all metrics except AUC on experimental 
datasets, and also has a much shorter training time than 
neural network approaches. 
  

Deep learning models have much more flexibility, and 
may perform better with hyperparameter optimization, 
regularization or training data, and may have faster training 
time with more powerful hardware such as GPU. However, 
we doubt all that effort is worth it for these network datasets 
that already perfom very well on much simpler algorithms. 
The deep learning models perform better than the shallow 
models at a specific range of within- and between- class 
variance in terms of accuracy. Whilst the shallow models 
outperform in another range. Out of those 2 ranges, these 
two groups of algorithms perform roughly the same. The 
reasons could be: 
 If the variances are too low, the datasets maybe too 

simple and all algorithms can perfom well 
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 If these variances are high, the deep learning models 
are weaker at picking up the slight extra complexity 
possibly due to inefficient optimization or having too 
many parameters which leads to overfitting, and thus 
underperforming the shallow ones. 

 If the variances then go higher, the shallow models 
will have difficulty formulating more complex 
underlying relationships that the deep models can now 
detect due to their higher number of parameters, thus 
deep models now outperform shallow ones. 

 Finally, if the variances are too high, both types of 
models will face too much difficulty in the 
classification task, and their performances are about 
similar again. Though, we think that with more tuning, 
deep models will perform better. 

In conclusion, within- and between-class variance may 
be good indicators of the complexity of a dataset. The Deep 
models will be good for more complex datasets and have 
much more room for expansion, however they will require 
a lot of processing power, as well as optimization efforts. 
The Shallow models should be used if the dataset is simple, 
if short training time is required, if thorough model 
optimization cannot be done, or simply if they perform well 
enough. 
 

At the bottom line, more conclusions could be derived 
from our results, and in the future, we would like to test on 
more datasets and metrics to find more trends and make 
better recommendations. 
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