• 제목/요약/키워드: Technologies for Aerospace

검색결과 265건 처리시간 0.031초

재사용 우주발사체의 회수 기술 현황 및 분석 (A Survey on Recovery Technology for Reusable Space Launch Vehicle)

  • 추교승;문호균;남승훈;차지형;고상호
    • 한국추진공학회지
    • /
    • 제22권2호
    • /
    • pp.138-151
    • /
    • 2018
  • 본 논문에서는 재사용 발사체와 발사체의 회수과정에서 사용된 기술에 대해 소개하고 분석한다. 이를 위하여 세계 각국의 재사용 발사체를 조사하였으며 발사체 회수 부분에 따라 기술을 분류하였다. 특히, 실제 비행에 성공한 Space X의 Falcon 9과 Blue Origin의 New Shepard의 회수과정을 중심으로 조사하였으며 비행 조건에 따라 적용된 기술들을 분석하여 특징들을 나열하였다. 이를 통하여 추후 한국형 발사체가 발사 비용을 절감하기 위해 사용할 수 있는 재사용 기술들에 대해 소개하고자 한다.

전기펌프사이클 엔진 등 민간분야 우주발사체 신기술고찰 (New Technologies of Space Launch Vehicles including Electric-Pump Cycle Engine)

  • 정승민;김귀순;오세종;최정열
    • 한국항공우주학회지
    • /
    • 제44권2호
    • /
    • pp.139-155
    • /
    • 2016
  • 본 논문에서는 최근의 우주발사체 기술 발전에 대한 소개가 이루질 것이다. 민간 분야에서의 우주개발 사업들의 사업 모델 및 핵심 기술에 대하여 간단한 정리하고, 핵심 기술의 발전 사항들에 대하여 좀 더 구체적으로 살펴볼 것이다. 특히 Rocketlab 사가 개발 중인 저가 고성능 경량 우주발사체 Electron 에 사용될 예정인 전기펌프 사이클 엔진에 대하여 좀 더 구체적으로 살펴보고, 이들이 로켓 과학자들에게 주는 시사점에 대하여 살펴볼 것이다.

Design, development and ground testing of hingeless elevons for MAV using piezoelectric composite actuators

  • Dwarakanathan, D.;Ramkumar, R.;Raja, S.;Rao, P. Siva Subba
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.303-328
    • /
    • 2015
  • A design methodology is presented to develop the hingeless control surfaces for MAV using adhesively bonded Macro Fiber Composite (MFC) actuators. These actuators have got the capability to deflect the trailing edge surfaces of the wing to attain the required maneuverability, besides achieving the set aerodynamic trim condition. A scheme involving design, analysis, fabrication and testing procedure has been adopted to realize the trailing edge morphing mechanism. The stiffness distribution of the composite MAV wing is tailored such that the induced deflection by piezoelectric actuation is approximately optimized. Through ground testing, the proposed concept has been demonstrated on a typical MAV structure. Electromechanical analysis is performed to evaluate the actuator performance and subsequently aeroelastic and 2D CFD analyses are carried out to see the functional requirements of wing trailing edge surfaces to behave as elevons. Efforts have been made to obtain the performance comparison of conventional control surfaces (elevons) with morphing wing trailing edge surfaces. A significant improvement in lift to drag ratio is noticed with morphed wing configuration in comparison to conventional wing. Further, it has been shown that the morphed wing trailing edge surfaces can be deployed as elevons for aerodynamic trim applications.

복합재 태양광 무인기 날개 일체성형 제작기법 연구 (A Study on Manufacturing Methods of Cocuring Composite Wings of Solar-Powered UAV)

  • 양용만;권정식;김진성;이수용
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.43-50
    • /
    • 2016
  • In order to suggest the optimal manufacturing technology of composite wings of solar-powered unmanned aerial vehicles, this study compared forming technologies to reduce wing weight for long-endurance flight and to improve the manufacturing process for cost-saving and mass production. It compared the manufacturing time and weight of various composite wing molding technologies, including cocuring, secondary bonding, and manufacturing by balsa. As a result, wing weight was reduced through cocuring methods such as band type composite fiber/tape lamination technology, which enabled prolonged flight duration. In addition, the reduced manufacturing time led to a lower cost, which is a good example of weight lightening for not only small solar-powered UAVs, but also composite aircraft.

Aerothermal Vortex Technologies in Aerospace Engineering

  • A. A. Khalatov;Nam, Chung-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.163-184
    • /
    • 2004
  • Vortex flow fundamentals have been investigating for about hundred years and many distinguished features had been discovered and comprehensively studied over that time. Due to unique hydrodynamic features vortex flows are now widely used in many industrial applications, including energy and power systems. combustion chambers. fuel sprayers. heat exchangers. clean-up systems. drying chambers. Up to recently aerospace engineers employed vortex flow only in combustion systems to stabilize a flame zone or in advanced heat exchangers to enhance heat transfer processes. This paper provides an overview of some recently developed aerothermal vortex technologies applied to aerospace engineering.

Development of Electrical Power Subsystem of Cube Satellite STEP Cube Lab for Verification of Space-Relevant Technologies

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.31-37
    • /
    • 2016
  • STEP Cube Lab (Cube Laboratory for Space Technology Experimental Project) is a 1U standardized pico-class satellite. Its main mission objective is an on-orbit verification of five fundamental core space technologies. For assuring a successful missions of the STEP Cube Lab with five payloads, electrical power subsystem (EPS) shall sufficiently provide an electrical power to payloads and bus systems of the satellite during an entire mission life. In this study, a design process of EPS system was introduced including power budget analysis considering a mission orbit and various mission modes of the satellite. In conclusion, adequate EPS hardware in compliance with design requirements were selected. The effectiveness and mission capability of EPS architecture design were confirmed through an energy balance analysis (EBA).

Study on the Fundamental Technologies of ATREX Engine

  • Sato, Tetsuya;Kobayashi, Hiroaki;Tanatsugu, Nobuhiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.665-670
    • /
    • 2004
  • This paper reviews the latest studies of the expander cycle Air Turbo Ramjet engine (ATREX) conducted in JAXA. First, a system analysis including the vehicle and trajectory was conducted to optimize the engine cycle and turbo-machine configuration. We selected the precooled turbo-jet cycle for a prototype engine using the near term technologies. Second, a system ground-firing test was conducted to verify a defrosting system for the precooler. Methanol injection with its particles atomization could compensate 80 % of pressure loss caused by the frost. Thirdly, a feasibility of carbon/carbon composites for the engine components was investigated by making complex shapes such as a heat exchanger and a plug nozzle. Basic technologies on the gas leakage, the junction and bonding were also studied. The end of the paper, some basic studies such as wind tunnel tests of a new type air inlet and a plug nozzle are described.

  • PDF

Structural Design and Analysis of Pico-class Satellite named STEP Cube Lab

  • Jeon, Su-Hyeon;Jang, Su-Eun;Jung, Hyun-Mo;Cha, Jin-Yeong;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • 제1권1호
    • /
    • pp.34-43
    • /
    • 2014
  • The STEP Cube Lab (Cube Laboratory for Space Technology Experimental Projects) is a 1U cube satellite developed by the Space Technology Synthesis Laboratory of Chosun University to be launched in 2015. Its mission objective is twofold: to determine which of the fundamental space technologies researched at domestic universities, will be potential candidates for use in future space missions and to verify the effectiveness of the technologies by investigating mission data obtained from on-orbit operation of the cube satellite. In this paper, a structural design concept based on the 1U standard to achieve the mission objective is introduced. The validity of the design has been demonstrated by quasi-static analysis and modal analysis. In addition, a non-explosive separation device triggered by burn wire heating, which is one of the main mission payloads is introduced.

전술전투기용 추진기관의 혁신 기술 (Innovative Technologies for Tactical Combat Aircraft Powerplants)

  • 이기영;강수준
    • 항공산업연구
    • /
    • 통권45호
    • /
    • pp.67-81
    • /
    • 1998
  • With projections into the future advanced Korea fighter development, the trend of tactical combat aircraft powerplants technique development over the past decade is presented. Ti was particularly focused on current innovative powerplants technologies such as lower density stronger materials and turbomachniery aerodynamics. With reviewing the status of aircraft powerplants which are currently underdeveloped next generation combat aircraft, it shows some core techniques that are needed for developing Korean type combat aircraft.

  • PDF

Measuring Multipath Error of a Pseudo Quasi-Zenith Satellite

  • Tsujii, Toshiaki;Tomita, Hiroshi;Okuno, Yoshinori;Petrovski, Ivan;Asako, Masahiro;Okano, Kazuki
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.125-129
    • /
    • 2006
  • Japan has been investigating a new satellite based positioning system called Quasi-Zenith Satellite System (QZSS). Since the improvement of positioning availability in urban area is one of the most important advantages of the QZSS, multipath mitigation is a key factor for the QZSS positioning system. Therefore, Japan Aerospace Exploration Agency (JAXA) and GNSS Inc. have commenced the R&D of a pseudolite, which transmits the next-generation signal such as BOC(1,1), in order to evaluate the effect of multipath on the new signal. A prototype BOC pseudolite was developed in 2005, and ground tests showed a capability of generating proper pseudorange. Also, preliminary flight experiments using a pseudo quasi-zenith satellite, a helicopter on which the pseudolite is installed, were conducted in early 2006, and the BOC-type correlation function was monitored in real time.

  • PDF