• Title/Summary/Keyword: Technical error

Search Result 462, Processing Time 0.028 seconds

An Evaluation Model for Analyzing the Overlay Error of Computer-generated Holograms

  • Gan, Zihao;Peng, Xiaoqiang;Hong, Huajie
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.277-285
    • /
    • 2020
  • Computer-generated holograms (CGH) are the core devices to solve the problem of freeform surface measurement. In view of the overlay error introduced in the manufacturing process of CGH, this paper proposes an evaluation model for analyzing the overlay error of CGH. The detection method of extracting CGH profile information by an ultra-depth of field micro-measurement system is presented. Furthermore, based on the detection method and technical scheme, the effect of overlay error on the wavefront accuracy of CGH can be evaluated.

A Review on the Field Activities for the Human Error Prevention in a Semiconductor Company (반도체 회사의 인적 오류 예방 활동 사례 및 검토)

  • Lee, Yong-Hee;Lee, Yong-Hee;Ruy, Jae-Seng
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.117-125
    • /
    • 2011
  • While human error happens repeatedly in the semiconductor industry in Korea, which has brought a tremendous loss from manpower, welfare etc., there are limitations to human error prevention activities. When a semiconductor company introduces new machines and facilities from Japan or Germany, the companies often do not consider human factors in the design. Also, semiconductor companies are so occupied with promoting increased productivity, their attention to human errors has been pushed aside. Negative aspects of technical exchange associated with safety management are one aspect of the industry's nature. A semiconductor company recently began acknowledging on the back of TQM(Total Quality Management) that human error has a decisive effect on the safety. There are a number of uncontrollable and hard to handle event sets because the nature of these events with a human error may often be threatened or very intensive. It is strongly required that systemic studies should be performed to grasp the whole picture of a current situation for hazard factors. This study aims to examine the human error approach through the case of human error prevention field activities in a semiconductor industry compared with the activities and experience in nuclear power plants.

A HIGH PRECISION CAMERA OPERATING PARAMETER MEASUREMENT SYSTEM AND ITS APPLICATION TO IMAGE MOTION INFERRING

  • Wentao-Zheng;Yoshiaki-Shishikui;Yasuaki-Kanatsugu;Yutaka-Tanaka
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.77-82
    • /
    • 1999
  • Information about camera operating such as zoom, focus, pan, tilt and tracking is useful not only for efficient video coding, but also for content-based video representation. A camera operating parameter measurement system designed specifically for these applications is therefore developed. This system, implemented in real time and synchronized with the video signal, measures the precise camera operating parameters. We calibrated the camera lens using a camera model that accounts for redial lens distortion. The system is then applied to infer image motion from pan and tilt operating parameters. The experimental results show that the inferred motion coincides with the actual motion very well, with an error of less than 0.5 pixel even for large motion up to 80 pixels.

A Mapping of the Overall Features of Technology Valuation (기술가치평가의 개념적 분석)

  • 설성수
    • Journal of Korea Technology Innovation Society
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 2000
  • This paper maps the overall features of technology valuation through a conceptional framework. The framework is composed of 4 dimensions such as basic, compositional, technical and behavioral dimension. At basic dimension, what is value and what is technology are discussed. The valuation of technology or the valuation of other assets are compared at the compositional dimension. The techniques of the valuation of technology and its difference with the valuation methods of other assets are examined at the technical dimension. The effectiveness, possibility and error of valuation are discussed at the behavioral dimension.

  • PDF

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Flight Technical Error Modeling for UAV supported by Local Area Differential GNSS (LADGNSS 항법지원을 받는 무인항공기의 비행 기술 오차 모델링 기법)

  • Kim, Kiwan;Kim, Minchan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1054-1061
    • /
    • 2015
  • Navigation accuracy, integrity, and safety of commercial Unmanned Aerial Vehicle (UAV) is becoming crucial as utilization of UAV in commercial applications is expected to increase. Recently, the concept of Local-Area Differential GNSS (LADGNSS) which can provide navigation accuracy and integrity of UAV was proposed. LADGNSS can provide differential corrections and separation distances for precise and safe operation of the UAV. In order to derive separation distances between UAVs, modeling of Flight Technical Error (FTE) is required. In most cases, FTE for civil aircraft has been assumed to be zero-mean normal distribution. However, this assumption can cause overconservatism especially for UAV, because UAV may use control and navigation equipments in wider performance range and follow more diverse path than standard airway for civil aircraft. In this research, flight experiments were carried out to understand the characteristics of FTE distribution. Also, this paper proposes to use Johnson distribution which can better describe heavy-tailed and skewed FTE data. Futhermore, Kolmogorov-Smirnov and Anderson-Darling tests were conducted to evaluate the goodness of fit of Johnson model.

Analysis of characteristics of position/speed estimator of an adaptive sensorless controller for PMSM (PMSM 적응 센서리스 제어기의 속도/위치 추정기의 특성 분석)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.503-504
    • /
    • 2015
  • This paper deals with the analysis of characteristics of position and speed estimator of an adaptive sensorless control algorithm for PMSM drives. The analysis shows that the back emf constant variation results in the position estimation error, but does not the speed estimation error. The simulation and experimental results are shown to verify the analysis result and the usefulness of the back emf constant estimator.

  • PDF

An analysis of errors in problem solving of the function unit in the first grade highschool (고등학교 1학년 함수단원 문제해결에서의 오류에 대한 분석)

  • Mun, Hye-Young;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.277-293
    • /
    • 2011
  • The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.

  • PDF

An Improved Fuzzy Logic-based Adaptive PWM Technique (퍼지 논리를 기반으로 하는 개선된 적용 PWM 기법)

  • Moon, Hyoung-Soo;Han, Woo-Yong;Kim, Sung-Jung;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1084-1087
    • /
    • 2002
  • This paper presents an improved fuzzy logic-based adaptive PWM technique. A fuzzy logic- based adaptive PWM technique determines the optimal output voltage vector which takes into account both direction of back-emf and direction of current error vector. This technique has a simple structure and a good level of stability, but it has disadvantages. The longer sampling period, the larger current error. Because there is no considerations of the current error magnitude of each phases. The proposed method improves the control performance by selecting the optimum switching pattern in which the magnitudes of current errors are considered introducing space vector concept. Simulation results using Matlab/Simulink show that the proposed control method reduces current error keeping the merit of previous one.

  • PDF

Optimization of Neural Network Structure for the Efficient Bushing Model (효율적인 신경망 부싱모델을 위한 신경망 구성 최적화)

  • Lee, Seung-Kyu;Kim, Kwang-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.