• Title/Summary/Keyword: Tearing energy

Search Result 59, Processing Time 0.039 seconds

Crock Resistance Properties of Natural Rubber Compounds for Tank Track Pads (군용 전투차량 궤도 pads용 천연고무 배합물의 내크랙성 향상을 위한 연구)

  • Shin, Jung-Eun;Kim, Yu-Seuk;Bae, Jong-Woo;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.335-344
    • /
    • 1998
  • In this study, the tearing energy and the rate of crack propagation of natural rubber (NR) compounds were evaluated to improve the crack resistance of tank-track pads. Although the factors affecting the crack resistance properties of NR compounds are various in this experiment, the effects of filler(carbon black) and the crosslinking system were evaluated. When the amount of accelerator is equal to that of sulfur( eg. efficient vulcanization), the compound shows the most excellent in the aged mechanical properties and the crack resistance properties. The ISAF carbon black(CB) having a good reinforcing characteristics was better than any other CB grades in physical properties and processablity. The optimum content was 50phr.

  • PDF

Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer (충전제가 EPDM의 피로균열 성장속도에 미치는 영향)

  • Hong, Chang-Kook;Jung, Jae-Yeon;Cho, Dong-Lyun;Kaang, Shin-Young
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.270-275
    • /
    • 2008
  • Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microductile type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.

Filler-Elastomer Interactions. 11. Influence of Atmospheric Pressure Plasma on Surface Properties of Nanoscaled Silicas (충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • In this work, the effect of oxygen plasma treatment of nano-scaled silica on the mechanical interfacial properties and thermal stabilities of the silica/rubber composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy (XPS) and contact angles. And, their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy ($G_{IIIC}$) and thermogravimetric analysis (TGA), respectively. As a result, it was found that the introduction rate of oxygen-containing polar functional groups onto the silica surfaces was increased by increasing the plasma treatment time, resulting in improving the tearing energy. Also, the thermal stabilities of the composites were increased by increasing the treatment time. These results could be explained that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the silica surfaces in a compounding system.

A Study on the Iodine-induced Stress Corrosion Cracking of Zircaloy-4 Cladding (I) (지르칼로이-4 피복재의 요드응력 부식 균열에 대한 연구)

  • Ryu, W.S.;Hong, S.I.;Choi, Y.;Kang, Y.H.;Rim, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.193-199
    • /
    • 1985
  • Iodine-induced stress corrosion cracking tests of Zircaloy-4 cladding were undertaken using the modified infernal pressurization method. The effects of iodine concentration and applied stress were studied. The critical iodine concentration for SCC was found to be about 0.2 mg/$\textrm{cm}^2$ at 603$^{\circ}$K. The threshold stress was dependent on the test temperature and the mechanical properties of the specimen. The fracture surface showed that the crack propagated stepwise iron one grain to others until the material was unstable and then ruptured mechanically. The initial region showed the transgranular feature and the wedge-shaped cracks. As the crack proceeded, the transgranular and ductile-tearing mired feature appeared in the middle region.

  • PDF

Prediction of Fatigue Life of 3D Jang-gu Rubber Specimens (3차원 장구형 고무시편의 피로수명예측)

  • Han, S.W.;Kim, J.Y.;Kim, W.D.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.710-715
    • /
    • 2001
  • Rubber is used extensively in many industries because of its large reversible elastic deformation, excellent damping and energy absorption characteristics, and wide availability. It becomes very important to predict the fatigue life of rubber components. But a great deal of time and cost are necessary for the fatigue test of rubber components. In this study the fatigue life of rubber components is evaluated by performing the fatigue test of a specimen and FE analysis. The fatigue life of Jang-gu type specimen which is considered as a simple rubber component is predicted and compared with experimental results. Its material is natural rubber of which hardness is 60 and used for the engine mount of commercial vehicles.

  • PDF

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF

A Study on the Microscopic Fracture Characteristics of A533B-1 Nuclear Pressure Vessel Steels (A533B-1 원자로 압력용기 강의 미시적 파괴특성에 관한 연구)

  • Jang, Chang-Heui;Kim, In-Sup;Park, Soon-Pil
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.165-170
    • /
    • 1989
  • The strain rate effects on fracture toughness and fracture resistance characteristics of A533B-1 nuclear pressure vessel steels were examined in the quasi-dynamic test conditions through the microscopic investigation of the intense strain region around crack tip and the microroughness of fracture surface. J-value calculated from the recrystallization etch technique was the same as calculated from the modified-J when the crack extension is less than 1.5mm in a 1/2T-CT specimen. Local fracture strain was calculated from the fracture surface micro-roughness. The local strains were calculated to be the values of 1.8 and 2.0 and were much higher than the macroscopically measured values. It was nearly independent on strain rate and was regarded as a material constant in ductile dimpled rupture. The fracture toughness increased with increase in strain rate while the tearing modulus showed little variation.

  • PDF

Preparation of Ceramic Paper Containing Zeolites and Its Characterization (제올라이트를 함유하는 세라믹종이의 제조 및 이의 특성평가)

  • Yoo, Yoon Jong;Kim, Hong Soo;Jeon, Sang Ho;Jang, Gun Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.654-659
    • /
    • 2005
  • The ceramic paper, which could adsorb VOC's effectively, was made by paper-making method with zeolite and ceramic fiber as main constituents. By this experiment, the optimal composition of the slurry for the ceramic paper formation was established. SEM observation showed that zeolite powder was uniformly dispersed and adhered to the paper by applying inorganic binder. The two type zeolites content in the ceramic paper was 26 wt$\%$ and its BET surface area was 131 $m^{2}$/g. The thickness and the basis weight of the ceramic paper were 0.2 mm and 130 g/$m^{2}$ respectively, and it had sufficient tensile characteristics to withstand tensile stress without tearing during corrugation. The total inorganic content of the paper was 78 wt$ \% $ and organic content was 22 wt$\%$. The equilibrium loading amount of toluene at the toluene at the toluene partial pressure of 0.2 mmHg was 3.2 wt$\%$.

Detection and Analysis of Discharge Pulses by Failure Mechanisms of the Separator inside Lithium-Ion Batteries (리튬이온 배터리의 분리막 손상 요인별 방전펄스의 검출과 분석)

  • Lim, Seung-Hyun;Lee, Gyeong-Yeol;Kim, Nam-Hoon;Kim, Dong-Eon;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.327-332
    • /
    • 2021
  • Lithium-ion batteries (LIBs) have become a main energy storage device in various applications, such as portable appliances, renewable energy facilities, and electric vehicles. However, the poor thermal stability of LIBs may cause explosion or fire. The thermal runaway is the result of a failure of the separator inside LIB. Damages like tearing, piercing, and collapsing of the separator were simulated in a mechanical, an electrical, and a thermal way, and small discharge pulses of a few mV were detected at the time of separator damages. From the experimental results, this paper provided a method that can identify the separator failure before thermal runaway in the aspect of a potential explosion and fire prevention measures.

Filler-Elastomer Interactions. 8. Influence of Fluorinated Nanoscaled Silicas on Mechanical Interfacial Properties and Thermal Stabilities of Polyurethane Matrix Composites (충전제-탄성체 상호작용. 8. 불소 처리한 나노크기의 실리카가 폴리우레탄 기지 복합재료의 기계적 계면특성 및 열안정성에 미치는 영향)

  • 박수진;조기숙
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • The effect of fluorination of nanoscaled silicas on mechanical interfacial properties and thermal stabilities of the silica/polyurethane composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy and contact angle measurements. Their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy and decomposition activation energy, respectively. As experimental results, the London dispersive component of surface free energy and fluorine functional groups of silica surfaces were increased as a function of fluorination temperature resulting in improving the trearing energy ($G_{IIIC}$) of the composites. Also, the thermal stabilities of the composites were increased as the treatment temperature increases. These results could be explained that the fluorine functional groups on silica surfaces played an important role in improving the intermolecular interactions at interfaces between silicas and polyurethane matrix in a composite system.