Browse > Article

Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer  

Hong, Chang-Kook (School of Applied Chemical Engineering, Chonnam National University)
Jung, Jae-Yeon (School of Applied Chemical Engineering, Chonnam National University)
Cho, Dong-Lyun (School of Applied Chemical Engineering, Chonnam National University)
Kaang, Shin-Young (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Polymer(Korea) / v.32, no.3, 2008 , pp. 270-275 More about this Journal
Abstract
Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microductile type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.
Keywords
crack growth characteristics; EPDM; silica; carbon black; tearing energy;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 G. J. Lake, Prog. Rubber Technol., 45, 89 (1983)
2 M. D. Ellul, "Mechanical Fatigue", in Engineering with Rubber: How to Design Rubber Components, A. N. Gent, Editor, Hanser Publishers, New York, 1992
3 A. A. Griffith, Philos. Trans. R. Soc. Lond., Ser., A221, 163 (1920)
4 S. S. Choi, C. Nah, S. G. Lee, and C. W. Joo, Polym. Int., 52, 23 (2003)   DOI   ScienceOn
5 S. Kaang, Y. W. Jin, Y. Huh, W. J. Lee, and W. B. Im, Polymer Testing, 25, 347 (2006)   DOI   ScienceOn
6 P. M. Schubel, E. E. Gdoutos, and I. M. Daniel, Theoretical and Applied Fracture Mechanics, 42, 149 (2004)   DOI   ScienceOn
7 A. I. Medalia and G. Kraus, Reinforcement of Elastomers by Particulate Fillers, Academic Press, San Diego, 1994
8 M. P. Wagner, Rubber Chem. Technol., 49, 703 (1977)
9 R. Rauline (to Michelin), US Patent 5,227,425 (1993)
10 G. J. Lake and A. G. Thomas, "Strength", in Engineering with Rubber: How to Design Rubber Components, A. N. Gent, Editor, Hanser Publishers, New York, 1992
11 N. Rattanasom, T. Saowapark, and C. Deeprasertkul, Polymer Testing, 26, 369 (2007)   DOI   ScienceOn
12 E. S. Dizon, A. E. Hicks, and V. E. Chirico, Rubber Chem. Technol., 47, 231 (1974)   DOI   ScienceOn
13 K. N. Pandey, D. K. Setua, and G. N. Mathur, Polymer Testing, 22, 353 (2003)   DOI   ScienceOn
14 A. G. Thomas, Rubber Chem. Technol., 67, G50 (1994)   DOI
15 A. I. Kasner and E. A. Meinecke, Rubber Chem. Technol., 69, 92 (1996)   DOI   ScienceOn
16 P. K. Pal and S. K. De, Rubber Chem. Technol., 55, 1370 (1982)   DOI   ScienceOn
17 Y. Suzuki, M. Owaki, M. Mouri, N. Sato, H. Honda, and K. Nakashima, Toyota Tech. Review, 48, 53 (1998)
18 S. Kaang and C. Nah, Polymer, 39, 2209 (1998)   DOI   ScienceOn
19 C. K. Hong, H. Kim, C. Ryu, C. Nah, Y. Huh, and S. Kaang, J. Mater. Sci., 42, 8391 (2007)   DOI   ScienceOn
20 W. V. Mars and A. Fatemi, Rubber Chem. Technol., 77, 391 (2004)   DOI   ScienceOn
21 E. E. Auer, K. W. Doak, and I. J. Schaffner, Rubber Chem. Technol., 31, 185 (1958)   DOI
22 G. J. Lake, Rubber Chem. Technol., 68, 435 (1995)   DOI   ScienceOn
23 R. S. Rivlin and A. G. Thomas, J. Polym. Sci., 10, 291 (1953)   DOI
24 G. J. Lake and P. B. Lindley, J. Appl. Polym. Sci., 8, 455 (1964)   DOI