• Title/Summary/Keyword: Tear strength

Search Result 290, Processing Time 0.026 seconds

Properties of Hanji Wallpaper by Incorporating Ceramics from Wood and Rice-husk (톱밥과 왕겨로 제조된 세라믹을 첨가한 한지벽지의 물성)

  • Lim, Hyun-A;Oh, Seung-Won;Kang, Jin-Ha
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • This study was carried out to explore a new application of traditional Hanji and obtain fundamental properties for producing Hanji wallpaper by incorporating ceramics from wood and rice-husk as an interior building material. The results of properties determined were summarized as follows: The addition of ceramics in Hanji paper reduced its apparent density, but increased bulk density due to the ceramic particles distributed on the surface and inside the fiber of Hanji wallpapers. In particular, woodceramic particles were specifically distributed on the fiber surface, while particles of rice-husk ceramics were permeated into the inside surface of fibers. The density of rice-husk ceramics were greater than that of woodceramics. The physical properties of Hanji wallpapers, such as breaking strength, wet breaking strength, burst strength, tear index and folding endurance were deteriorated with the addition of ceramics. However, the addition of woodceramics in the Hanji wallpaper resulted in better strength in most cases than that of rice-husk ceramics, except tear strength. Therefore, an optimum addition level of woodceramics into the wallpaper was found to be 5% on the basis of intensity. The addition of ceramics also prolonged the combustion time because it lowered air permeability and brightness of the wallpaper.

  • PDF

Preparation and Physical Properties of Acrylonitrile-Butadiene Rubber Nanocomposites Filled with Zinc Dimethacrylate (디메틸아크릴산 아연을 이용한 아크릴로나이트릴-부타디엔 고무 나노복합체의 제조 및 물성)

  • 진원섭;이해성;나창운
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • Elastomeric nanocomposites were prepared by employing zinc dimethacrylate into an acrylonitrile-butadiene rubber, and their network structures, mechanical properties, and fracture morphologies were investigated according to the adding methods and contents of zinc dimethacrylate. The total crosslink density increased with increasing the zinc dimethacrylate level, due to increased ionic bonds. Both the tensile strength and tear strength increased with increasing zinc dimethacrylate loadings, and then decreased after reaching a maximum value. It was found that the tear strength and crack resistance were greatly affected by the mixing method of zinc dimethacrylate. The in-situ nanocomposites, where zinc dimethacrylate particles were formed by the reaction of zinc oxide and methacrylic acid, showed much improved tear strength and crack resistance compared to those of the nanocomposites based on the direct mixing of zinc dimetacrylate powders. This was because of the finer zinc dimethacrylate particles and improved dispersion of the in-situ nanocomposites.

Strength property improvement of OCC-based paper by chemical and mechanical treatments (3 - handsheet physical properties) (골판지 고지의 물리화학적 처리에 의한 강도향상 (제3보 - 수초지의 물리적특성변화))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.70-70
    • /
    • 2000
  • This study is a continuation of the previous experimental analysis and is mostly focused on handsheet strength properties. Four completely different fibers, which were Hw-BKP, Sw-BKP, white ledger, and OCC, were selected to investigate the effect of mechanical pre-treatment by Hobart mixer on handsheet strength properties. After equal time mechanical pre-treatment, the fibers were refined with laboratory valley beater for 10, 20 and 30 minutes, and handsheets were prepared from the fibers for physical strength comparison. Handsheets from SW-BKP and OCC showed 5-30% increase of breaking length, burst index, tear index, and compression index while handsheets from HW-BKP and white ledger no Increase except tear index. In Hobart mixer pre-treatment, HW-BKP and white ledger fibers were easily attached to the wall of the mixer bowl and mechanical action was not effectively applied. The fiber length of Hw-BKP and white ledger were 0.837mm and 1.591 mm, respectively, while SW-BKP and OCC were 2.744 mn and 2.033 mm, respectively, in weight weighted length. The effective mechanical pre-treatment seems to be related to the fiber length. Tear indexes of the pre-treated furnish were much higher than no pre-treatment at the same breaking length level.

  • PDF

Environmentally Friendly Paper with Superior Moisture -Proof Properties(II) -Recyclable properties of moisture-proof paper- (방습 효과가 우수한 환경친화적인 방습지(2보) -방습 도공지의 재생 특성-)

  • 이명구;유재국
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • This study was done in an effort to evaluate the possibility of recyclability of moisture-proof paper. Because it is difficult to recycle laminated moisture-proof paper, a mixture of styrene-butadiene latex(SB latex) and wax emulsion was used as moisture-proof paper chemicals. A bar coater was applied to make moisture-proof paper and the coated weight was 17 g/$m^2$. The mixing ratios of SB latex to wax emulsion were 85 : 15, 87 : 13, and 90 : 10, respectively. It was observed that the moisture-proof paper treated with SB latex and wax emulsion at the appropriate ratio could be recycled effectively. The moisture-proof paper was similar to base paper in degree of pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particle which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of handsheets made of both moisture-proof paper and base paper after pulping was measured to examine the fiber bonding and no significant difference in mechanical properties was observed.

Influence of Thermal Aging on the Properties of Polyurethane Coating of Waterproof. (우레탄 도막 방수재의 열열화 특성)

  • Kim, Sung-Rae;Shin, Hong-Chol;Shin, Ju-Jae;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.931-934
    • /
    • 2008
  • Polyurethane apply to the waterproof widely. Polyurethane rubbers are prepared that the influences of a thermal aging on the properties are investigated. Polyol and Polyisocyanate were varied ratio in the range mixed by using individual product that was vulcanized by a hot. The waterproofs of Polyurethane were investigated about tensile strength, tear strength and elongation after the thermal Aging for 168, 336, 504 hrs at 70$^{\circ}$C and 80$^{\circ}$C in the air oven. As the increase of the thermal aging time, tensile strength, tear strength and elongation were reduced.

  • PDF

The Washing Finish of Blue Jeans(I) - the comparison of neutral cellulase, acid cellulase, stone, and stone-neutral cellulase washings - (청바지의 세탁가공에 관한 연구(I) -세탁가공의 종류를 중심으로-)

  • 신혜원;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.2
    • /
    • pp.471-481
    • /
    • 1997
  • Denims were treated with neutral cellulase, acid cellulase, stone, and stone-neutral cellulase respectively at different cellulase concentrations varying treatment times in rotary washer. The effect of washing on denim was estimated by the changes in weight, color, back staining, tear strength, flex stiffness, and surface characteristics. Also the comparison of neutral cellulase, acid cellulase, stone, and stone-neutral cellulase washings was studied. Washing removes surface fibers and provides weight loss, color difference, back staining, and a decrease in tear strength and in flex stiffness. Stone-neutral cellulase washing and acid cellulase washing have a larger washing effect than neutral cellulase washing and stone washing.

  • PDF

The Effect of Biopolishing with Cellulase Enzyme on Ramie and Hemp Fabrics (마직물의 셀룰라이제 효소처리에 의한 유연가공효과에 관한 연구)

  • Kim, Jung-Hee;Yu, Hye-Ja
    • Fashion & Textile Research Journal
    • /
    • v.3 no.4
    • /
    • pp.367-372
    • /
    • 2001
  • Five kinds of commercial ramie and hemp fabrics were treated with cellulase under different concentrations. Samples were mercerized before enzyme treatment to investigate the effect of mercerization on cellulase enzyme treatment. Physical characteristics(weight loss, tear strength retention, wrinkle recovery, drape stiffness, dyeability) of cellulase enzyme treated and untreated samples were measured and compared. X-ray diffractions were examined to verify if there were any changes in their crystallinity of enzyme treated fabrics. Weight loss, wrinkle recovery and degree of crystallinity increased as the concentration of cellulase enzyme increased. In the meanwhile, tear strength retention and drape stiffness and dyeability decreased. Enzyme activity was more effective on mercerized samples. Particularly, there was distinct tendency to increase weight loss and flexibility.

  • PDF

Construction of sports engineering structures with high resistance to improve the quality of sports training

  • Lin He;Qiyuan Deng
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.211-220
    • /
    • 2023
  • The textile industry has benefited from nanotechnology in various fields of application as the use of nanomaterials, and nanotechnology is multiplying. Nanoparticles can increase the performance of textiles by up to 100 times when used in finishing, coating, and dyeing techniques, providing them with capabilities they did not previously possess. Nanotechnology is used in the textile chemical industry to produce sports mats with stain resistance, flame resistance, wrinkle resistance, moisture management, antimicrobial quality, and UV protection. The incorporation of nanomaterials into fabrics can have a significant effect on their properties, including shrinkage, strength, electrical conductivity, and flammability. Various inventions and innovations may result from nano-processed textiles in the future, thus leading to the advancement of science. This article presents the construction of sports engineering structures with high resistance to improve the quality of sports training. The mechanical properties of sports mats are improved with the help of nanotechnology. Strength, elasticity, and tear resistance are among these properties. This method enables the production of elastic, durable, and tear-resistant sports mats.