• Title/Summary/Keyword: Taylor approximation

Search Result 94, Processing Time 0.025 seconds

Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method (이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.779-787
    • /
    • 2007
  • This paper presents a highly efficient moving least squares finite difference method (MLS FDM) for a heat transfer problem of bi-material with interfacial boundary. The MLS FDM directly discretizes governing differential equations based on a node set without a grid structure. In the method, difference equations are constructed by the Taylor polynomial expanded by moving least squares method. The wedge function is designed on the concept of hyperplane function and is embedded in the derivative approximation formula on the moving least squares sense. Thus interfacial singular behavior like normal derivative jump is naturally modeled and the merit of MLS FDM in fast derivative computation is assured. Numerical experiments for heat transfer problem of bi-material with different heat conductivities show that the developed method achieves high efficiency as well as good accuracy in interface problems.

Analysis of Dynamic Crack Propagation using MLS Difference Method (MLS 차분법을 이용한 동적균열전파 해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.

Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow (자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발)

  • Nam, Jung-Woo;Park, Jong-Chun;Park, Ji-In;Hwang, Sung-Chul;Heo, Jae-Kyung;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

Investigation on Boundary Conditions of Fractional-Step Methods: Compatibility, Stability and Accuracy (분할단계법의 경계조건에 관한 연구: 적합성, 안정성 및 정확도)

  • Kim, Young-Bae;Lee, Moon-J.;Oh, Byung-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.410-415
    • /
    • 2001
  • An analytical and numerical examination of second-order fractional-step methods and boundary condition for the incompressible Navier-Stokes equations is presented. In this study, the compatibility condition for pressure Poisson equation and its boundary conditions, stability, and numerical accuracy of canonical fractional-step methods has been investigated. It has been found that satisfaction of compatibility condition depends on tentative velocity and pressure boundary condition, and that the compatible boundary conditions for type D method and approximately compatible boundary conditions for type P method are proper for divergence-free velocity for type D and approximately divergence-free for type P method. Instability of canonical fractional-step methods is induced by approximation of implicit viscous term with explicit terms, and the stability criteria have been founded with simple model problems and numerical experiments of cavity flow and Taylor vortex flow. The numerical accuracy of canonical fractional-step methods with its consistent boundary conditions shows second-order accuracy except $D_{MM}$ condition, which make approximately first-order accuracy due to weak coupling of boundary conditions.

  • PDF

Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank (안전주입탱크의 재충수 단계 유동에 대한 이론해석)

  • Park, Jun Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.675-683
    • /
    • 2017
  • In this study, a theoretical analysis was performed to the flow of refilling stage in a safety injection tank, which is the core cooling system of nuclear power plant in an emergency. A theoretical model was proposed with a nonlinear governing equation defining on the flow of the refilling process of the coolant. Utilizing the Taylor-series expansion, the $1^{st}$ - order approximation flow equation was obtained, along with its analytic solution of closed type, which could predict accurately the variations of free surface height and flow rate of the coolant. The availability of theoretical result was confirmed by comparing with previous experimental results.

Foreign Direct Investment and Economic Growth in SAARC Countries

  • Erum, Naila;Hussain, Shahzad;Yousaf, Abida
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.3 no.4
    • /
    • pp.57-66
    • /
    • 2016
  • Foreign Direct Investment (FDI) plays a vital role in economic growth of the countries. The present study analyses the impact of the FDI on economic growth of South Asian Association of Regional Cooperation countries by using the pooled data for the period 1990-2014. Neo-classical production function has been used for analysis and getting stock-to-flow estimation, Taylor series approximation has applied. Fixed Effects Model has been used to investigate the impact of FDI, domestic capital, labour and government expenditures on economic growth. It is the evident from the results that both domestic investment and FDI have been a positive effect on economic growth. The study finds that the contribution of domestic private investment is more trustworthy than the contribution of FDI. Consequently, FDI loses its attraction as an engine of growth if the adverse balance of payment consequence of the resulting profit repatriating is also taken into account. The labour has positive and significant association with GDP. The effect of government expenditure is negligible on economic growth. The findings suggest that growth strategy cannot yield the long term benefits if it neglects investments on human capital.

Steering Angle Error Compensation Algorithm Appropriate for Rapidly Moving Sources (빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법)

  • 박규태;박도현;이정훈;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • This paper presents a steering angle error compensation (SAEC) algorithm that is appropriate for rapidly moving sources. The Proposed algorithm utilizes a modal covariance matrix from multiple frequency components instead of the multiple snapshots in a narrowband SAEC, and estimates the steering error by maximizing the wideband WVDR output power using a first-order Taylor series approximation of the modal steering vector in terms of the steering error. As such, the steering error can be compensated with short observation times. Several simulations using artificial and sea trial data are used to demonstrate the Performance of the proposed algorithm.

Design and analysis of OFDM receiver employing LMLE algorithm (LMLE 알고리듬을 이용한 OFDM 수신기 설계 및 분석)

  • 이종열;정영모;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3174-3182
    • /
    • 1996
  • In this paper, a new receiver is proposed for the detection of the OFDM(orthogonal frequency division multiplexing) signals in the time-selective multipath fading channel. For the optimal detection, we estimate the transmitted symbols from OFDM demultiplexing signal using the LMLE(linear masimum likelihold estimation) algorithm. Also, in this paper, the lowerbound for BER(bit error rate) using Taylor series approximation is provided. If the matched filter is used for the OFDM receiver in the time-selectivemultipath fading channel, it is known that the SER(symbol error rate) is always greater than $10^{-1}$, due to the cross-talk between adjacent channels. But, the proposed receiver provides of SER with 15dB SNR. Also, it is found that for the receiver implemented using the LMLE algorithm, the performance is shown to be not affected by the increase of th enumber of subchannel and channel path.

  • PDF

Study on the direct approach to reinitialization in using level set method for simulating incompressible two-phase flows (비압축성 2 상유동의 모사를 위한 level set 방법에서의 reinitialization 직접 접근법에 관한 연구)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.568-571
    • /
    • 2008
  • The computation of moving interface by the level set method typically requires reinitializations of level set function. An inaccurate estimation of level set function ${\phi}$ results in incorrect free-surface capturing and thus errors such as mass gain/loss. Therefore, accurate and robust reinitialization process is essential to the free-surface flows. In the present paper, we pursue further development of the reinitialization process, which evaluates directly level set function ${\phi}$ using a normal vector in the interface without solving the re-distancing equation of hyperbolic type. The Taylor-Galerkin approximation and P1P1splitting FEM are adopted to discretize advection equation of the level set function and the Navier-Stokes equation, respectively. Advection equation of free surface and re-initialization process are validated with benchmark problems, i.e., a broken dam flow and time-reversed single vortex flow. The simulation results are in good agreement with the existing results.

  • PDF

Optimization Technique of Passenger Car Suspension System Considering J-Turn Handling Performances (J-선회 조종성능을 고려한 승용차 현가장치의 최적화 기법)

  • Lee, Sang-Beom;Lee, Chun-Seung;Yim, Hong-Jae;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.267-273
    • /
    • 2004
  • The purpose of this paper is to develop a systematic design method for the suspension system hard points and compliance elements, which have great influence on the handling stability of a vehicle. In this paper, a method to optimize J-turn responses is presented based on the principles of design of experiments, multi-body dynamic analysis and optimum design technique. The design variables associated with the J-turn maneuver are selected through the experimental design sensitivity analysis using the perturbation method. An objective function is defined as an approximate function for the J-turn characteristics using the TSA(Taylor series approximation). The values of the design variables, which make the optimized J-turn characteristics, are obtained using the conjugate gradient method. The result of the J-turn simulation shows that the optimized vehicle has more improved handling stability than the optimized vehicle.