• 제목/요약/키워드: Task computing

검색결과 544건 처리시간 0.023초

Managing Deadline-constrained Bag-of-Tasks Jobs on Hybrid Clouds with Closest Deadline First Scheduling

  • Wang, Bo;Song, Ying;Sun, Yuzhong;Liu, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.2952-2971
    • /
    • 2016
  • Outsourcing jobs to a public cloud is a cost-effective way to address the problem of satisfying the peak resource demand when the local cloud has insufficient resources. In this paper, we studied the management of deadline-constrained bag-of-tasks jobs on hybrid clouds. We presented a binary nonlinear programming (BNP) problem to model the hybrid cloud management which minimizes rent cost from the public cloud while completes the jobs within their respective deadlines. To solve this BNP problem in polynomial time, we proposed a heuristic algorithm. The main idea is assigning the task closest to its deadline to current core until the core cannot finish any task within its deadline. When there is no available core, the algorithm adds an available physical machine (PM) with most capacity or rents a new virtual machine (VM) with highest cost-performance ratio. As there may be a workload imbalance between/among cores on a PM/VM after task assigning, we propose a task reassigning algorithm to balance them. Extensive experimental results show that our heuristic algorithm saves 16.2%-76% rent cost and improves 47.3%-182.8% resource utilizations satisfying deadline constraints, compared with first fit decreasing algorithm, and that our task reassigning algorithm improves the makespan of tasks up to 47.6%.

A Task Scheduling Method after Clustering for Data Intensive Jobs in Heterogeneous Distributed Systems

  • Hajikano, Kazuo;Kanemitsu, Hidehiro;Kim, Moo Wan;Kim, Hee-Dong
    • Journal of Computing Science and Engineering
    • /
    • 제10권1호
    • /
    • pp.9-20
    • /
    • 2016
  • Several task clustering heuristics are proposed for allocating tasks in heterogeneous systems to achieve a good response time in data intensive jobs. However, one of the challenging problems is the process in task scheduling after task allocation by task clustering. We propose a task scheduling method after task clustering, leveraging worst schedule length (WSL) as an upper bound of the schedule length. In our proposed method, a task in a WSL sequence is scheduled preferentially to make the WSL smaller. Experimental results by simulation show that the response time is improved in several task clustering heuristics. In particular, our proposed scheduling method with the task clustering outperforms conventional list-based task scheduling methods.

Adaptive boosting in ensembles for outlier detection: Base learner selection and fusion via local domain competence

  • Bii, Joash Kiprotich;Rimiru, Richard;Mwangi, Ronald Waweru
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.886-898
    • /
    • 2020
  • Unusual data patterns or outliers can be generated because of human errors, incorrect measurements, or malicious activities. Detecting outliers is a difficult task that requires complex ensembles. An ideal outlier detection ensemble should consider the strengths of individual base detectors while carefully combining their outputs to create a strong overall ensemble and achieve unbiased accuracy with minimal variance. Selecting and combining the outputs of dissimilar base learners is a challenging task. This paper proposes a model that utilizes heterogeneous base learners. It adaptively boosts the outcomes of preceding learners in the first phase by assigning weights and identifying high-performing learners based on their local domains, and then carefully fuses their outcomes in the second phase to improve overall accuracy. Experimental results from 10 benchmark datasets are used to train and test the proposed model. To investigate its accuracy in terms of separating outliers from inliers, the proposed model is tested and evaluated using accuracy metrics. The analyzed data are presented as crosstabs and percentages, followed by a descriptive method for synthesis and interpretation.

OpenCL을 이용한 돈사 감시 응용의 효율적인 태스크 분배 (Efficient Task Distribution for Pig Monitoring Applications Using OpenCL)

  • 김진성;최윤창;김재학;정연우;정용화;박대희;김학재
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권10호
    • /
    • pp.407-414
    • /
    • 2017
  • 다수의 태스크로 구성된 돈사 감시 응용은 내재된 데이터 병렬성을 활용하고 성능가속기를 사용하여 병렬 처리가 가능하다. 본 논문에서는 멀티코어 CPU와 매니코어 GPU로 구성된 이기종 컴퓨팅 플랫폼에서 돈사 감시 응용 수행 시 태스크 분배 방법을 제안한다. 즉, 각 태스크별로 OpenCL을 이용한 병렬 프로그램을 작성한 뒤, deviceCPU와 deviceGPU 각각에서 수행시켜 측정된 수행시간을 기준으로 가장 적합한 처리기를 결정한다. 제안 방법은 간단하지만 매우 효과적이고, CPU와 GPU로 구성된 이기종 컴퓨팅 플랫폼에서 다수의 태스크로 구성된 다른 응용을 병렬화하는 경우에도 적용될 수 있다. 실험 결과, 상이한 이기종 컴퓨팅 플랫폼에서 최적의 태스크 분배로 수행한 경우 가 전체 태스크들을 deviceGPU에서 수행한 GPU-only 방법에 비교하여 각각 2.7배, 8.7배, 2.7배 성능 개선이 되었음을 확인하였다.

클라우드 환경에서 GPU 연산으로 인한 가상머신의 성능 저하를 완화하는 GPGPU 작업 관리 기법 (GPGPU Task Management Technique to Mitigate Performance Degradation of Virtual Machines due to GPU Operation in Cloud Environments)

  • 강지훈;길준민
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권9호
    • /
    • pp.189-196
    • /
    • 2020
  • 최근 클라우드 환경에서는 고성능 연산이 가능한 GPU(Graphics Processing Unit) 장치를 가상머신에게 적용한 GPU 클라우드 컴퓨팅 기술이 많이 사용되고 있다. 클라우드 환경에서 가상머신에게 할당된 GPU 장치는 대규모 병렬 처리를 통해 CPU보다 더 빠르게 연산을 수행할 수 있으며, 이로 인해 다양한 분야의 고성능 컴퓨팅 서비스들을 클라우드 환경에서 운용할 때 많은 이점을 얻을 수 있다. 클라우드 환경에서 GPU 장치는 가상머신의 성능 향상에 많은 도움을 주지만 가상머신의 CPU 사용 시간을 기반으로 작동하는 가상머신 스케줄러에서는 GPU 장치의 사용 시간이 고려되지 않아 다른 가상머신들의 성능에 영향을 미친다. 본 논문에서는 클라우드 환경에서 가상머신에게 GPU를 할당할 때 많이 사용되는 직접 통로기반 GPU 가상화 환경에서 GPGPU(General-Purpose computing on Graphics Processing Units) 작업을 수행하는 가상머신으로 인한 다른 가상머신들의 성능 저하 현상을 검증하고 분석하며, 이를 해결하기 위한 가상머신의 GPGPU 작업 관리 기법을 제안한다.

모바일 클라우드 컴퓨팅에서 데이터센터 클러스터링과 가상기계 이주를 이용한 동적 태스크 분배방법 (A Dynamic Task Distribution approach using Clustering of Data Centers and Virtual Machine Migration in Mobile Cloud Computing)

  • 존크리스토퍼 마테오;이재완
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.103-111
    • /
    • 2016
  • 모바일 기기로부터 클라우드 서버로 태스크를 오프로딩하는 방법은 클라우드랫(cloudlet)의 도입으로 인해 향상되었다. 동적 오프로딩 알고리즘을 통해 모바일 장비는 수행할 타스크에 적절한 서버를 선택할 수 있다. 하지만 현재의 태스크 분배 방식은 의사결정에서 중요한 VM의 수를 고려하지 않고 있다. 본 논문은 클러스터된 데이터 센터에서 동적인 타스크 분배 방법을 제시한다. 또한 서버에서 자원의 과부하를 방지하기 위해 할당된 CPU에 따라 VM을 균형있게 클라우드 서버에 이주시키는 VM이주 기법을 제안한다. 클라우드 서버의 이주 방법을 향상시키기 위해 최대 CPU 관점에서 데이터 센터의 자원 용량도 고려한다. 시뮬레이션 결과, 제시한 태스크 분배 기법이 전반적으로 시스템의 성능을 향상시켰음을 나타내었다.

볼런티어 컴퓨팅 환경에서 성능간섭 최소화와 연산 효율성 증대를 위한 CPU/GPU 컴퓨팅 자원 최적화 기법 (The Optimization Mechanism of CPU/GPU Computing Resource for Minimization of Performance Interference and Calculation Efficiency in Volunteer Computing Environment)

  • 박봉우;송충건;유헌창
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권12호
    • /
    • pp.479-486
    • /
    • 2017
  • 볼런티어 컴퓨팅(Volunteer Computing)은 많은 노드들의 유휴자원을 이용하여 연산을 수행하는 새로운 컴퓨팅 패러다임이다. 볼런티어 컴퓨팅 수행을 위해 운영하는 클라이언트 어플리케이션은 사용자의 설정 정보에 의해 동작 방식이 결정된다. 이상적인 동작을 위해서는 시스템 특징과 다른 어플리케이션의 동작 방식에 최적화된 설정이 요구된다. 본 연구에서는 유휴 자원 정보를 주기적으로 CPU와 GPU의 사용 비율을 분석하고 최적화된 옵션을 정해 동적으로 적용하는 관리자를 개발하였다. 또한 CPU 자원의 높은 활용도를 위해 태스크 스케일링을 진행하고 CPU코어를 주기적으로 재 할당 하여 CPU자원이 균등하게 사용되게 하였다. 제시하는 기법을 통해 기존의 볼런티어 컴퓨팅보다 높은 태스크 연산 능력을 보였으며 성능간섭 또한 최소화 시켰다. 볼런티어 컴퓨팅을 진행하는데 있어 볼런티어들이 더 높은 컴퓨팅 자원을 제공할 수 있게 될 것으로 예상한다.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.