• Title/Summary/Keyword: Task computation

Search Result 191, Processing Time 0.029 seconds

A Parallel Algorithm of Davidson Method for Solving and Electomagnetic Problem (전자장문제를 위한 Davidson 방번의 병렬화)

  • Kim, Hyong Joong;Zhu, Yu
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.255-260
    • /
    • 1997
  • The analysis of eigenvalue and eigenvector is a crucial procedure for many electromagnetic computation problems. Although it is always the case in practice that only selected eigenpairs are needed, computation of eigenpair still seems to be a time-consuming task. In order to compute the eigenpair more quickly, there are two resorts: one is to select a good algorithm with care and another is to use parallelization technique to improve the speed of the computing. In this paper, one of the best eigensolver, the Davidson method, is parallelized on a cluster of workstations. We apply this scheme to a ridged waveguide design problem and obtain promising linear speedup and scalability.

  • PDF

A Solution Method of a Three-Player Game for Application to an Electric Power Market (전력시장 해석을 위한 3연 참여 게임의 해법 연구)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.347-353
    • /
    • 2003
  • In models of imperfect competition of deregulated electricity markets, the key task is to find the Nash equilibrium(NE). The approaches for finding the NE have had two major bottlenecks: computation of mixed strategy equilibrium and treatment of multi-player games. This paper proposes a payoff matrix approach that resolves these bottlenecks. The proposed method can efficiently find a mixed strategy equilibrium in a multi-player game. The formulation of the m condition for a three-player game is introduced and a basic computation scheme of solving nonlinear equalities and checking inequalities is proposed. In order to relieve the inevitable burden of searching the subspace of payoffs, several techniques are adopted in this paper. Two example application problems arising from electricity markets and involving a Cournot and a Bertrand model, respectively, are investigated for verifying the proposed method.

EEG Asymmetry Changes by the Left and the Right SMR Brainwave of the Computer Learning Versus the Paper and Pencil Learning

  • Kwon, Hyung-Kyu;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1073-1079
    • /
    • 2007
  • The purpose of this study is to present the relationship between the computer learning and the paper and pencil learning through the math learning (simple computation and complex computation) and the cartoon learning and text learning. The canonical correlation and pairwise t-test of the SMR asymmetry brainwaves of the left and the right brain show the brainwaves with the respect to the manner in which they process information during the specified task by identifying the relative activity of the brainwaves of the left and the right brain. SMR brainwave which known as the scientific measure tool for the activity and the function of the neuronal cell were found to predict the level of the awakening to check the readiness of study preparation. Computer education as a medium of the individualized and the repetitive education shows the difference from the paper and the pencil test in the respect of the differences and the relationship of the SMR brainwave of the learning process.

  • PDF

Computation of Gradient of Manipulability for Kinematically Redundant Manipulators Including Dual Manipulators System

  • Park, Jonghoon;Wangkyun Chung;Youngil Youm
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 1999
  • One of the main reason advocating redundant manipulators' superiority in application is that they can afford to optimize a dexterity measure, for example the manipulability measure. However, to obtain the gradient of the manipulability is not an easy task in case of general manipulator with high degrees of redundancy. This article proposes a method to compute the gradient of the manipulability, based on recursive algorithm to compute the Jacobian and its derivative using Denavit-Hartenberg parameters only. To characterize the null motion of redundant manipulators, the null space matrix using square minors of the Jacobian is also proposed. With these capabilities, the inverse kinematics of a redundant manipulator system can be done automatically. The result is easily extended to dual manipulator system using the relative kinematics.

  • PDF

KAIST ARM의 고속동작제어를 위한 하드웨어 좌표변환기의 개발

  • 박서욱;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.127-132
    • /
    • 1992
  • To relize the future intelligent robot the development of a special-purpose processor for a coordinate transformation is evidently challenging task. In this case the complexity of a hardware architecture strongly depends on the adopted algorithm. In this paper we have used an inverse kinemetics algorithm based on incremental unit computation method. This method considers the 3-axis articulated robot as the combination of two types of a 2-axis robot: polar robot and 2-axis planar articulated one. For each robot incremental units in the joint and Cartesian spaces are defined. With this approach the calculation of the inverse Jacobian matrix can be realized through a simple combinational logic gate. Futhermore, the incremental computation of the DDA integrator can be used to solve the direct kinematics. We have also designed a hardware architecture to implement the proposed algorithm. The architecture consists of serveral simple unitsl. The operative unit comprises several basic operators and simple data path with a small bit-length. The hardware architecture is realized byusing the EPLD. For the straight-line motion of the KAIST arm we have obtained maximum end effector's speed of 12.6 m/sec by adopting system clock of 8 MHz.

A Study of the Guess Pattern Hypothesis in Language Acquisition: Looking at Children′s Interpretation of Stress-Shift Constructions (언어습득 과정에서 발생하는 추측양상에 대한 연구: 강세이동구문을 중심으로)

  • 강혜경
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.2
    • /
    • pp.27-35
    • /
    • 2003
  • The present study, focusing on the stress-shift constructions, examines the tendency of young children to give wrong wide scope interpretation in language acquisition and questions the validity of the guess pattern hypothesis argued by Grodzinsky & Reinhart (1993). According to the hypothesis, children know that they have to construct a reference-set, keep two representations in working memory, and check whether the interpretation needed in the given context justifies selection of competing reference sets, but their working memory is not big enough to hold the materials needed to complete the execution of this task. Hence they give up and resort to a guess. 1 carried out an experiment of 16 Korean children aged 3;9 to 6;2 to find out whether children have more difficulty in the interpretation of stress-shift constructions than of constructions with a nuclear stress, and therefore perform the interpretation of the former by guessing. Assuming that the tendency is caused by a deficiency in contextual computation rather than reference set computation, I try to explain it in terms of pragmatic considerations.

  • PDF

Mixed-Domain Adaptive Blind Correction of High-Resolution Time-Interleaved ADCs

  • Seo, Munkyo;Nam, Eunsoo;Rodwell, Mark
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.894-904
    • /
    • 2014
  • Blind mismatch correction of time-interleaved analog-to-digital converters (TI-ADC) is a challenging task. We present a practical blind calibration technique for low-computation, low-complexity, and high-resolution applications. Its key features are: dramatically reduced computation; simple hardware; guaranteed parameter convergence with an arbitrary number of TI-ADC channels and most real-life input signals, with no bandwidth limitation; multiple Nyquist zone operation; and mixed-domain error correction. The proposed technique is experimentally verified by an M = 4 400 MSPS TI-ADC system. In a single-tone test, the proposed practical blind calibration technique suppressed mismatch spurs by 70 dB to 90 dB below the signal tone across the first two Nyquist zones (10 MHz to 390 MHz). A wideband signal test also confirms the proposed technique.

A Priority-based Interactive Approach to Multi-agent Motion Planning (우선 순위 기반 쌍방향 다개체 동작 계획 방법)

  • Ji, Sang-Hoon;Jung, Youn-Soo;Lee, Beom-Hee
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.46-57
    • /
    • 2006
  • It is well known that mathematical solutions for multi-agent planning problems are very difficult to obtain due to the complexity of mutual interactions among multi-agent. Most of the past research results thus are based on the probabilistic completeness. However, the practicality and effectiveness of the solution from the probabilistic completeness is significantly reduced by heavy computational burden. In this paper, we propose a practically applicable solution technique for multi-agent planning problems, which assures a reasonable computation time and a real world application for more than 3 multi-agents for the case of general shaped paths in agent movement. First, to reduce the computation time, a collision map is utilized for detecting potential collisions and obtaining collision-free solutions for multi-agents. Second, to minimize the maximum of multi-agent task execution time, a method is developed for selecting an optimal priority order. Simulations are finally provided for more than 20 agents to emphasize the effectiveness of the proposed interactive approach to multi-agent planning problems.

  • PDF

A Simplified Model to Extract GPS based Trajectory Traces (간소화된 GPS 기반 궤적 추적 모델)

  • Saleem, Muhammad Aamir;Go, Byunggill;Lee, Y.K;Lee, S.Y.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.472-473
    • /
    • 2013
  • The growth in number and efficiency of smart devices such as GPS enabled smart phones and PDAs present an unparalleled opportunity for diverse areas of life. However extraction of GPS traces for provision of services demand a huge storage space as well as computation overhead. This is a challenging task especially for the applications which provide runtime services. In this paper we provide a simplified model to extract GPS traces of moving objects at runtime. Road segment partitioning and measure of deviation in angle of trajectory path is incorporated to identify the significant data points. The number of these data points is minimized by our proposed approach in an efficient manner to overwhelm the storage and computation overhead. Further, the competent reconstruction of complete itinerary based on gathered data, is also ensured by proposed method.

Computational Cost Reduction Method for HQP-based Hierarchical Controller for Articulated Robot (다관절 로봇의 계층적 제어를 위한 HQP의 연산 비용 감소 방법)

  • Park, Mingyu;Kim, Dongwhan;Oh, Yonghwan;Lee, Yisoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • This paper presents a method that can reduce the computational cost of the hierarchical quadratic programming (HQP)-based robot controller. Hierarchical controllers can effectively manage articulated robots with many degrees of freedom (DoFs) to perform multiple tasks. The HQP-based controller is one of the generic hierarchical controllers that can provide a control solution guaranteeing strict task priority while handling numerous equality and inequality constraints. However, according to a large amount of computation, it can be a burden to use it for real-time control. Therefore, for practical use of the HQP, we propose a method to reduce the computational cost by decreasing the size of the decision variable. The computation time and control performance of the proposed method are evaluated by real robot experiments with a 15 DoFs dual-arm manipulator.