• Title/Summary/Keyword: Task assignment problem

검색결과 39건 처리시간 0.021초

이종의 다중컴퓨터에서 태스크 할당을 위한 효율적인 알고리즘 (An Efficient Task Assignment Algorithm for Heterogeneous Multi-Computers)

  • 서경룡;여정모
    • 한국정보처리학회논문지
    • /
    • 제5권5호
    • /
    • pp.1151-1161
    • /
    • 1998
  • 본 논문은 서로 다른 성능을 가진 프로세서들로 구성된 다중컴퓨터 시스템에서 태스크의 할당에 관한 문제를 다룬다. 다중 컴퓨터 시스템의 성능을 최대로 발휘하기 위해서는 분산구조를 가진 프로그램 모듈들을 실행시간을 최소화하도록 각 프로세서에 할당하여야 한다. 이러한 할당방법을 태스크의 균등할당이라 하는데 부하가 적절하기 못한 프로세서는 제 성능을 발휘하지 못하고 전체 시스템의 성능을 저하시키기 때문에 태스크를 균등하게 할당하는 것이 성능향상을 위한 좋은 방법이다. 이러한 태스크 할당문제를 해결하기 위하여 본 논문에서는 비 균등 할당의 비용을 수식화 할 수 있는 새로운 목적함수를 제시하였다. 제안된 목적함수를 사용하여 태스크 할당문제를 통신비용과 작업비용, 그리고 비 균등 할당비용의 합을 최소화하는 문제로 단순화 시켰다. 이렇게 변화된 문제는 NP-hard의 문제이므로 최적에 근사한 할당을 구하는 $O(n^2m)$의 복잡도를 가지는 휴리스틱 알고리즘을 제안하였다. 이때 m, n은 각각 태스크와 프로세서의 개수이다.

  • PDF

Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition

  • Xue, Fei;Tang, Hengliang;Su, Qinghua;Li, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3566-3582
    • /
    • 2019
  • In intelligent warehouse picking system, the allocation of tasks has an important influence on the efficiency of the whole system because of the large number of robots and orders. The paper proposes a method to solve the task allocation problem that multi-robot task allocation problem is transformed into transportation problem to find a collision-free task allocation scheme and then improve the capability of task processing. The task time window and the power consumption of multi-robot (driving distance) are regarded as the utility function and the maximized utility function is the objective function. Then an integer programming formulation is constructed considering the number of task assignment on an agent according to their battery consumption restriction. The problem of task allocation is solved by table working method. Finally, simulation modeling of the methods based on table working method is carried out. Results show that the method has good performance and can improve the efficiency of the task execution.

Repeated Overlapping Coalition Game Model for Mobile Crowd Sensing Mechanism

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3413-3430
    • /
    • 2017
  • With the fast increasing popularity of mobile services, ubiquitous mobile devices with enhanced sensing capabilities collect and share local information towards a common goal. The recent Mobile Crowd Sensing (MCS) paradigm enables a broad range of mobile applications and undoubtedly revolutionizes many sectors of our life. A critical challenge for the MCS paradigm is to induce mobile devices to be workers providing sensing services. In this study, we examine the problem of sensing task assignment to maximize the overall performance in MCS system while ensuring reciprocal advantages among mobile devices. Based on the overlapping coalition game model, we propose a novel workload determination scheme for each individual device. The proposed scheme can effectively decompose the complex optimization problem and obtains an effective solution using the interactive learning process. Finally, we have conducted extensive simulations, and the results demonstrate that the proposed scheme achieves a fair tradeoff solution between the MCS performance and the profit of individual devices.

Compromise Scheme for Assigning Tasks on a Homogeneous Distributed System

  • Kim, Joo-Man
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.141-149
    • /
    • 2011
  • We consider the problem of assigning tasks to homogeneous nodes in the distributed system, so as to minimize the amount of communication, while balancing the processors' loads. This issue can be posed as the graph partitioning problem. Given an undirected graph G=(nodes, edges), where nodes represent task modules and edges represent communication, the goal is to divide n, the number of processors, as to balance the processors' loads, while minimizing the capacity of edges cut. Since these two optimization criteria conflict each other, one has to make a compromise between them according to the given task type. We propose a new cost function to evaluate static task assignments and a heuristic algorithm to solve the transformed problem, explicitly describing the tradeoff between the two goals. Simulation results show that our approach outperforms an existing representative approach for a variety of task and processing systems.

CBBA 기반 SEAD 임무를 위한 이종무인기의 분산형 임무할당 알고리듬 연구 (Distributed Task Assignment Algorithm for SEAD Mission of Heterogeneous UAVs Based on CBBA Algorithm)

  • 이창훈;문건희;유동완;탁민제;이인석
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.988-996
    • /
    • 2012
  • 본 논문에서는 CBBA 알고리듬을 이용하여 SEAD 임무를 위한 이종무인기의 분산형 임무할당 알고리듬을 다룬다. SEAD 임무는 다수의 무인기를 다수의 대공 방어망 목표물에 할당 시키는 임무할당문제로 정의 할 수 있으며, 작전에 참여하는 무인기는 대공 방어망 파괴를 주목표 하는 위즐(weasel)과 주요 작전 및 전투 피해 평가를 수행하는 스트라이커(striker)로 구성된다. 본 논문에서는 최단경로생성 알고리듬과 CBBA 알고리듬을 이용하여 지형 장애물(terrain obstacle)이 있는 환경에서의 경로계획이 고려 된 이종 무인기의 분산형 임무할당 기법을 개발하고 SEAD 임무에 적용한다. 수치 시뮬레이션을 통하여 개발 된 기법의 성능과 적용가능성에 대해 검토한다.

A new heuristics for the generalized assignment problem

  • Joo, Jaehun
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.47-53
    • /
    • 1995
  • The Generalized Assignment (GAP) determines the minimum assignment of n tasks to m workstations such that each task is assigned to exactly one workstation, subject to the capacity of a workstation. In this paper, we presented a new heuristic search algorithm for GAPs. Then we tested it on 4 different benchmark sample sets of random problems generated according to uniform distribution on a microcomputer.

  • PDF

A hybrid tabu search algorithm for Task Allocation in Mobile Crowd-sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.102-108
    • /
    • 2020
  • One of the key features of a mobile crowd-sensing (MCS) system is task allocation, which aims to recruit workers efficiently to carry out the tasks. Due to various constraints of the tasks (such as specific sensor requirement and a probabilistic guarantee of task completion) and workers heterogeneity, the task allocation become challenging. This assignment problem becomes more intractable because of the deadline of the tasks and a lot of possible task completion order or moving path of workers since a worker may perform multiple tasks and need to physically visit the tasks venues to complete the tasks. Therefore, in this paper, a hybrid search algorithm for task allocation called HST is proposed to address the problem, which employ a traveling salesman problem heuristic to find the task completion order. HST is developed based on the tabu search algorithm and exploits the premature convergence avoiding concepts from the genetic algorithm and simulated annealing. The experimental results verify that our proposed scheme outperforms the existing methods while satisfying given constraints.

관련작업을 고려한 혼합모델 조립라인 밸런싱 (Mixed Model Assembly Line Balancing with the Related Task Consideration)

  • 김여근;곽재승
    • 한국경영과학회지
    • /
    • 제18권2호
    • /
    • pp.1-22
    • /
    • 1993
  • This paper deals with the problem of mixed model assembly line balancing. In mixed model assembly lines, tsks should be assigned to stations in such a manner that all stations have approximately the same amount of work on a production cycle basis. Further in balancing assembly lines, the related tasks, the performing task side and the team tasks should be considered to improve work methods, to give more job satisfaction to workers, and to allow greater flexibility in the design of assembly lines. In this paper, the heuristic dispatch assignment rule is developed to assign evenly tasks of each model to all stations. The heuristic method based on the assignment rule developed is presented for mixed model assembly line balancing with the considerations of the related tasks, the performing task side, and the team tasks. The proposed method is analyzed, and compared with other methods for line balancing.

  • PDF

OPTIMAL PERIOD AND PRIORITY ASSIGNMENT FOR A NETWORKED CONTROL SYSTEM SCHEDULED BY A FIXED PRIORITY SCHEDULING SYSTEM

  • Shin, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.39-48
    • /
    • 2007
  • This paper addresses the problem of period and priority assignment in networked control systems (NCSs) using a fixed priority scheduler. The problem of assigning periods and priorities to tasks and messages is formulated as an optimization problem to allow for a systematic approach. The temporal characteristics of an NCS should be considered by defining an appropriate performance index (PI) which represents the temporal behavior of the NCS. In this study, the sum of the end-to-end response times required to process all I/Os with precedence relationships is defined as a PI. Constraints are derived from the task and message deadline requirements to guarantee schedulability. Genetic algorithms are used to solve this constrained optimization problem because the optimization formulation is discrete and nonlinear. By considering the effects of communication, an optimum set of periods and priorities can be holistically derived.

RBAC 에서 권한 할당 제약사항들 간의 충돌 탐지 모델 (The Model of Conflict Detection between Permission Assignment Constraints in Role-Based Access Control)

  • 임현수;조은애;문창주
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.51-55
    • /
    • 2005
  • Assuring integrity of permission assignment (PA) constraints is a difficult task in role-based access control (RBAC) because of the large number of constraints, users, roles and permissions in a large enterprise environment. We provide solutions for this problem using the conflict concept. This paper introduces the conflict model in order to understand the conflicts easily and to detect conflicts effectively. The conflict model is classified as a permission-permission model and a role-permission model. This paper defines two type conflicts using the conflict model. The first type is an inter-PA-constraints (IPAC) conflict that takes place between PA constraints. The other type is a PA-PAC conflict that takes place between a PA and a PA constraint (PAC) Also, the conditions of conflict occurrence are formally specified and proved. We can assure integrity on permission assignment by checking conflicts before PA and PA constraints are applied.

  • PDF