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An Efficient Task Assignment Algorithm for Heterogeneous
Multi—-Computers

Kyung-ryong Seo' - Jeong-mo Yeo'!

ABSTRACT

In this paper, we are considering a heterogeneous processor system in which each processor may have different
performance and reliability characteristics. In other to fully utilize this diversity of processing power it is advantageous
to assign the program modules of a distributed program to the processors in such a way that the execution time of the
entire program is minimized. This assignment of tasks to processors to maximize performance is commonly called load
balancing, since the overloaded processors can perform their own processing with the performance degradation.

For the task assignment problem, we propose a new objective function which formulates this imbalancing cost. Thus
the task assignment problem is to be carried out so that each module is assigned to a processor whose capabilities are
most appropriate for the module, and the total cost is minimized that sum of inter-processor communication cost and
execution cost and imbalance cost of the assignment. To find optimal assignment is known to be NP-hard, and thus we
proposed an efficient heuristic algorithm with time complexity O(n%m) in case of m task modules and n processors.

1. Introduction considered to be a set of programmable proc

-essors, each with private memory, intercon-
A heterogeneous multi-computer system is nected to some extent by communication links
(6). The heterogeneity in a computing system

A YR AL FREFE} zas is not an entirely new concept. Several types
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specific services for improving system throu-
ghput.

A task to be run on a distributed system
consists of m modules. Each of the modules
comprising a task will execute on the one of
n processors and communicate with some oth
er modules of the task. Furthermore, a dist
ributed program is defined as a program that
consists of several program modules or tasks
that are free to reside on any processor in the

system.

Because of high penalties for communication,
the practical solution for using a heterogeneous
system is to do as little communication between
processors as possible, relegating such commun
-ication to file transfers before and after major
blocks of computation are run. This category of
scheduling problems have been traditionally
formulated as a task assignment problem(1,
3.4,

A task allocation problem 1is a difficult
problem even without timing constraints. For
example. finding optimal assignment of tasks
with an arbitrary communication graph to four
or more processors with difference speeds is
known to be NP-hard. Considerable efforts
have been spent on more restrictive allocation
problems or on developing heuristic algorithms
to find suboptimal solutions. Most of the
results can be extended and applied to find
suboptimal solutions.

Stone developed network flow algorithms(14]
to allocate tasks with arbitrary communication
patterns in dual-processor and three-processor
systems. Lee and et al. extended Stones result

to a linear-array structured system(7). Recently, .

the task assignment problem on host satellite

systems and tree structure systems using simil

ar approach are developed by Seo and et al(8,
9].

Bokhari developed a dynamic programming
algorithm to allocate tasks that form a tree to
a system with an arbitrary number of processors.
The time complexity of his algorithm is O(nm?)
(5). His approach was extended by Towsley(15]
to handle tasks with series-parallel precedence
graph.

The above approaches consider heterogen-
eous processors. However, these approaches
attempt to minimize the total execution cost
and the communication cost of tasks. They
do not attempt to balance the load of the
processors(2).

Efe, et al. developed a heuristic allocation
algorithm(10,11) to balance processor load
and to minimize communication cost. His
algorithm consist of two phases. First, tasks
are clustered with each other to optimize
the communication cost and each cluster of
tasks is assigned to a processor. Then, tasks
are shifted from overloaded to underloaded
processors in order to meet load balance
constraints.

The algorithm is repeated until a satisfact
-ory degree of load-balancing is archived. This
algorithm, however, fail to distribute the tasks
evenly when the processors in the system
are not similar.

Lo developed heuristic algorithms(12] which
incorporate a cost function to maximize the
concurrent approaches that can also be applied
to hard real-time systems in the same ways as
described above.

In this paper, we present an efficient
heuristic task allocation algorithm. The
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allocation is done before actual run time of
the application problem. It is assumed that
the execution cost of the subtasks and the
IPC cost, which arises due to the interacting
modules residing on different processors. It
distributes the modules of an application
problem as evenly as possible among the
processors and tries to minimize the IPC
cost. The
partitioned programs of any number of

method can be applied to
modules and to multi-computers with any
number of processors and any point-to-point
interconnection network.

2. Task Allocation Problem

2.1 Problem model

A multi-computer system can be represented
by an undirected graph called a processor
graph, Gp = (Vp, Ep), where Vp is the set of
processors in the system and Epe VpxX Vi is

the set of edges representing communication
links between processors.

Similarly, each task can be described by an
undirected graph called the task graph, Gr =
(Vr, Er), where Vris the set of nodes represen
-ting a task of the job, and Er€Vrx V7 is
the set of edges representing the intertask com
-munication between the two task nodes conn-
ected by the edge. When there is an edge betw
-een two task nodes in Gr, the two tasks are
said to be related to each other.

In our case, the interconnection of
processors is modeled by a cost matrix C
with a typical element ¢; denoting the
volume of communication between tasks i
and j. If the link (4,/))&E7 then c¢;=0.

Also we take c¢;=0, for all /.

The communication cost can be thought of
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as being composed of two parts: a static part
that takes into account the total number of
bytes transferred in a single execution of tasks
i and j, and a dynamic part that accounts for
the frequency of process execution and
communications related queueing delays.

Note that whereas the static communication
cost can be precisely accounted for by inspection
of the tasks cost, the dynamic part has to be
estimated based on gathered statistical informa
-tion and is dependent upon the allocation itself.
Next we model the interconnection of processors
through a delay matrix D where the typical ele
-ment dy denotes the communication delay for
sending a byte from a processor k to a processor
L
If processors k and / are neighbors in the
processor graph, then di reflects the cost
multiple

of point to point or access

communication.

If the processors are not neighbors, but
there is a path form %k to [/ in the
processor graph, then du reflects the cost
of intraprocessor message sending per unit
message length. If a particular allocation
assigned task 7 on processor k and task Jj
on processor I, then the communication
cost for this particular assignment is
taken to be ¢ du.

Each task 7 represents a load lx on processor
k which reflects CPU time this task demands.

For given processors and attached I/0
devices, we can calculate the load of a specific
process, if we let the process run on the
processor and measure the CPU execution time
e. In addition. we have to measure the rate at
which this process is asked to execute.

The problem involves the development of
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task allocation models for the heterogeneous
computing system. The model must allocate
tasks among the processors to archive the
following goals:

« Allow specification of a large number
of constraints to facilitate a variety of
engineering application requirements.

* Balance the utilization of individual
Processors.

* Minimize the interprocessor communication
cost.

The design of a mathematical model for
task allocation for a heterogeneous computing

system involves the following steps:

* Formulate the cost function to measure
the interprocessor communication(IPC)
cost and the processing cost.

» Formulate a set of constraints to meet
the diverse requirements.

* Derive an iterative algorithm to obtain a

minimum total cost solution.

2.2 Cost function

The cost function is formulated as the sum
of the IPC cost and the processing cost.
IPC cost is a function of both task coupling
factors and interprocessor distance. Coupling
factor ¢; is the number of data units
transferred from task i to task J.
Interprocessor distance dw is certain distance
related communication costs associated with
one unit of data transferred from processor k
to processor /. If tasks i and j are assigned to
processors k and I, respectively, the
interprocessor cost is ¢+ dy. If k = ] then

dik=0. The unit of IPC cost is application

dependent. For example, the unit of ¢; is word

and dy is $/word, the IPC unit is dollars.
Processing cost gix represents the cost to

process task 7 on processor k. It can be used
to control the processor assignment. For
example, if task i must not be executed on the
processor k, a very large value can be
assigned to gi to inhibit the assignment.

The assignment variable is defined as follows:

¥ 1, if task 7 is assigned to processor k.
Y =
' 0, otherwise.

The total cost for processing the tasks is
stated as

2.30wg 4 X at 22eid wX #X ).
The normalize constant w is used to scale

processing cost and IPC cost to account for
any difference in measuring units.

In general, we are considering a heterogene-
ous processor system in which each processor
may have different performance and reliability
characteristics. In order to fully utilize this
diversity of processing power it is advantageous
to assign the program modules of a distributed
program to the processors in such a way that
the execution time of the entire program is mi-
nimized.

This assignment of tasks to processors to
maximize performance is commonly called load
balancing. Each processor k sets an upper
bound Ui on the total load that can be
allocated, beyond which this processor enters
the nonlinear part of its load versus
throughput curve and becones saturated.

Total load on a processor is the sum of
execution costs of the modules assigned to it.
Then the load balancing constraints can be
written as:

2% X< U, for all &
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The above load constraint is hard to treat
since it’s nonlinear property. The overloaded
processors can perform their own processing
with the performance degradation. If a
processor not run on the sutable load, the
amount of lower or upper it’s load capability
is a measure of loss or price paid because of
imbalance, compared to the case when each
processor has the suitable load.

For a given assignment the load imbalance
cost is formulated as follows:

& 2 wxa— U,

Thus the processor allocation of program

COST jpua =

modules is to be carried out so that each
module is assigned to a processor whose
capabilities are most appropriate for the
module, and total cost is minimized that is
sum of IPC cost and execution cost and
imbalance cost of the assignment, i.e.,

COST yysi = COST et COSTypct COST o

= 2'2;( wg X + 2;2:22;( ciduX X
+ 3% 0x4- Ul

2.3 Task allocation Example

The Fig. 1 and shows an example program
graph in a distributed system. The nodes on
the program graph represent modules, and the
links represent intermodule communication
patterns. The numbers on the branches, also
called the branch weights, represent the cost
of communication between modules when the
modules are not resident modules are assumed
to be zero when the pair of modules are
coexist. The costs are normally given in units
of time or dollars, and the units must be the
same units to express execution costs.

The Table 1 shows the execution costs of the
program modules. An infinite cost indicates

O—O—0

a) processor graph

b) Task graph
(Fig. 1) Processor graph and Task Graph

{Table 1> Execution cost table

Py P P
my 5 ® ® attached to P;
me 4 3 3
ms 2 2 4
my 4 4 5
ms 2 3 ®
ms 3 3 2
my ® 4 4
ms ® © 1 attached to Ps
S 2 6 2
e . 3 3 .g' ).
1 XX
R :f.‘:-:-' R & e . g
"a%% - e 3
P :

(Fig. 2) An allocation example with total cost 43,

that a module cannot be executed on that
processor. We have shown in this example a
situation in which some modules run faster on
processor 1 and some modules run faster on
processor 2 and others run faster on processor
3. For any given module assignment, the cost
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of the assignment is the sum of the execution
costs from the table plus the sum of the
intermodule communication costs for those

modules that are not coexist.

3. The Heuristic Algorithm

3.1 Definitions and assumptions

In almost all other heuristic approaches, a
search is made for a pair of modules with the
maximum communication cost between them.
Such a module pair is assigned to a processor
with the intention of minimizing the IPC cost.
But, in several cases, assigning a pair of
modules with the largest communication cost
to a processor would not result in a reduction
of IPC cost. This fact is evident when a
module is interacting with many other
modules.

In our algorithm, therefore we do not search
for such pairs of modules, but for single
modules called maximally linked modules, as
defined below:

Definition:

The sum of intermodule communication cost
of myx with other modules is called the link
capacity of the module and a module mg in a
program graph is called a maximally linked
module if the link capacity is larger than the
link capacity of an other module, i.e.,

zlck)% for all h#k such that cy+0

where ¢y is the IPC cost between the module
m; and m; when m; and m; are assigned to
different processors. Thus, a maximally linked
module can be easily determined by finding the
sum of the labels of all edges incident on a
node. Since a maximally linked module has

maximum communication with the interacting
modules, it would be advantageous to form
clusters around such modules. Thus, a
maximally linked module will tend to absorb
its neighboring modules. The maximally linked
modules represent maxima of intermodule
communications in the given program graph.
Some modules may have to be assigned to
specific processors, to exploit their unique
capabilities.

In this respect modules are divided into
three categories, as follows:

(a) attached modules that can only be
assigned to certain processors

(b) modules that can be assigned to any one
of a certain set of processors:

these are also considered as attached
modules

(¢) modules that can be assigned to any
processor.

3.2 Heuristic algorithm

Our algorithm starts by assigning one or
more modules to each processor. These could
be the attached modules of the processors. If a
processor dose not have any attached module,
then we assign one of the maximally linked
module to it. Having assigned an initial
module to each processor, other modules which
have maximum data exchfange with the
already assigned modules on a processor are
chosen for allocation.
Thus, the module clusters are formed around
the attached modules or maximally linked
modules.

The number of clusters is equal to the
number of processors. This process is to
continued wuntil the total cost becomes
minimum. The minimally linked modules are
used to adjustment load condition. The
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algorithm is as follows:

The algorithm

Step 1: Order all modules of M + (m. ... , mi)
in decreasing order of link
capacity.

Step 2: Assign initial module to each processor.
Processors having attached modules
are assigned these modules.

These modules are removed in the
list M.

Step 3: For a processor P, calculate unbalance
cost.

Step 4: While (List M is not empty) do
Get a module mx from M and
allocate to the processor P
which can resuit the minimum
cost.

Update the unbalance cost of B.
End(While)

Step 5: Order all modules of M = (my, ... . my)

Step 6 Repeat
Choose a module my which is
assigned to processor P from
M and a processor F; such
that the cost improvement is
maximum,

If such a my; exists, move it
to FPr.
Until no m; was chosen
(*End of algorithm*)

Step 1 and Step 5 list modules in preferred
orders. Step 3 calculates the unbalance cost of
the processors. Step 4 tries to assign the
module at the processor is the most cost
efficiently. Step 6 tries to eliminate as much
cost of an assignment as possible. Using an
efficient sorting algorithm, Step 1 and Step 5
can be done in O(n log n) in the-worst case.
Step 4 needs O(n’m) comparisons and Step 6
needs O(nm?®) comparisons. Since n is typically
greater than m, the time complexity of the

EEFE UM EiL3 Z2EE Rt 28X0 ZueiE 1157

algorithm is O(n’m)/.

3.3 An illustrative example

In this example, the distributed computer
system consists of three processors with the
topology shown in Fig. 1. Table 1 gives the
load capacity of the processors and attached
modules. Module allocation is started by
initially assigning the attached modules to
their respective processors:
module 1 to pl and module 7 to P3 and
ordered set M = (m6, m2, m4, m3, m7) is
obtained. In order to allocate a module to
processor properly, A good estimation cost
function is required.

If m; is selected to allocate to P, we
calculate an estimated allocation cost COSTi.
An estimated cost COSTi consist of the three
cost EXECy, IPCix and LOADx.

Each cost is calculated as follows.

EXEC, = I

IPC; = 2$CzydleikXﬂ

LOAD; = 33 \laXu— Ul = 21 aXut L= Ul
In this case, ms is maximally linked module,

thus ms is selected for the next allocation and
the estimated cost is calculated as follows:

EXECs = 3,
IPCs; = 6,
LOADg = -3,
EXECs2 = 3,
]PCsz - 3,
LOADg; = -3,
EXECs = 2,
IPCss = 0,
LOADg; = -2

Since the sum of costs of COSTss is
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P, (3,6,-3) P,(3,8,-3) P, (2,0,-2)

|

P, (2,6,-2) P2 (3,3,-3) P, (infinity)

|

P, (4,7,-4) B, (3,3,-3) P, (3,5,-3)

P, {4,4,-4) P,(4,0,0)

|

P, 2,2,-2) P, 2,2,2) Py (4,6,2)

|

P, (infinity) B, (4,3,4) P, (4,0,2)

(Fig. 3) Snapshots of stepwise execution of the algorithm

minimum, thus ms is allocated to Ps.
This process is continued until list M is
empty. All these steps involved in module
allocation are illustrated in Fig. 3.

If all modules are allocated to the

processors, the reallocation process is
started(Step 5, Step 6). First, the minimally
linked module ml is selected, but it is
attached module. Thus the next module m7 is
selected and reallocation cost is calculated as
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similar with previous described manner.

(Fig. 4) Reallocation process

All  these steps involved in module
reallocation are illustrated in Figure 4. In this
case, the module ms is reallocated to P; from
P; and the module ms is reallocated to P from
P;. The final clusters allocated to each
processors are shown in Figure 5.

EXEC = 11 +8+5=24
IPC = 6+4=10
LOAD = 1+0+0=1
TOTAL = 35

(Fig. 5) Final allocation with cost 35
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4. Simulation results and Conclusions

4.1 Simulation results

To evaluate the effectiveness of the proposed
algorithm, simulations were run on a Sun
Sparc Station20 running Solaris 2.4.

The results in Table 2 show the general diff
~erences between the Sarje’s algorithm(13] and
our proposed algorithm. We performed 600 sim
-ulations for fully connected computer system
containing 3-7 processors. A large number of
program graphs were considered for evaluating
the performance of our algorithm. The execution
cost of subtasks were picked randomly in the
range from 5 to 50, and IPC costs were chosen
in the range from 0 to 20.

The algorithm in (13) can get a good. but
not an optimal allocation for a homogeneous
and fully connected multi-computer system.
Thus simulations are evaluated for the
homogeneous fully-connected multi-computer
systems.

The results in Table 3 show that the algorithms
are pratical even for large, heterogeneous,
arbitrary structure computer systems. We perf
-ormed 400 simulations for a hypercube struct-
ured computer system containing 8-128 process
-ors. A large number of program graphs were
considered for evaluating the performance of
our algorithm. The execution cost of modules
were picked randomly in the range from 2 to 100,
and the IPC costs were chosen in the range from
0 to 50.

A simulated annealing approach is based on
an analogy between annealing process in which
a meterail is melted and cooled very slowly
and the solution of a difficult combinatorial
optimization problem. The running times
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{Table 2> Simulation resuitst

0 Our Algorithm Sarje’s Algorithm

EXEC [PC LOAD TOTAL |TIME(ms)| EXEC IPC LOAD TOTAL |TIME(ms)
3 481.2 121.3 62.2 664.7 13.0 487.3 120.6 74.2 682.1 10.9
4 485.5 134.7 65.6 695.8 14.3 492.2 135.3 774 704.9 11.2
5 483.6 146.9 68.5 699.0 15.8 491.5 148.1 80.2 719.8 12.4
6 480.1 161.4 76.7 718.2 15.1 484.7 163.5 87.6 735.8 14.7

P 481.9 183.3 80.9 746.1 16.3 486.7 185.3 90.8 762.8 17.5
(Table 3> Simulation resuits?

o Qur Algorithm Simulated Annealing

EXEC IPC LOAD TOTAL |TIME(ms)| EXEC IPC LOAD TOTAL | TIME(ms)
8 863.5 186.3 104.2 1154.0 26.2 847.6 185.1 115.2 1147.9 3.85
16 860.7 3214 118.4 1300.6 34.1 843.4 325.4 130.4 1299.2 3.87
32 856.8 437.3 126.9 1421.0 41.6 840.6 430.3 134.4 1405.3 3.91
64 853.3 598.3 135.1 1586.0 | 59.4 831.1 590.1 140.7 1567.9 4.26
128 850.5 816.9 149.3 1816.7 70.2 830.6 790.6 160.4 1781.6 4.78

required by simulated annealing approach are

thus excessive.

It can be seen that the proposed algorithm
is over thousands times as fast as simmulated
annealing methods. The costs generated by
simulated annealing were generally slightly
better, although the solutions obtaining by our
proposed algorithm were never worse by more

than 5% in terms of total costs.

As can be seen, the results produced by the

proposed algorithm decreased with each
allocation cost. This improvement can be
explained by observing the reassignment

process of the proposed algorithm(i.e. Step 6:)

4.2 Conclusions

In order to fully utilize processing power it
is advantageous to assign the program modules
of a distributed program to the processors in
such a way that the execution time of the
entire program is minimized. The overloaded
processors can perform its own processing
with the performance degradation. Thus, the

processor allocation of program modules is

to be carried out so that each module is
assigned to a processor whose capabilities are
and total
cost is minimized that is sum of IPC cost and

most appropriate for the module,

execution cost and imbalance cost of the

assignment.

In this paper, we present an effiecient
task The
algorithm converges fast and obtains a good

heuristic allocation algorithm.
solution. Experimental results indicate that
the proposed algorithm performs quite well
on a variety of task-processor system.
Heuristic algorithms do not always provide
the optimum solution. However, in most of
the cases, the algorithm presented in this
paper does provide solutions that are close
to optimum. Thus, the proposed algorithm is
clearly preferable in a pfactical context.
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