• Title/Summary/Keyword: Targeted therapy

Search Result 403, Processing Time 0.024 seconds

Endpoint of Cancer Treatment: Targeted Therapies

  • Topcul, Mehmet;Cetin, Idil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4395-4403
    • /
    • 2014
  • Nowadays there are several limitations in cancer treatment. One of these is the use of conventional medicines which not only target cancer cells and thus also cause high toxicity precluding effective treatment. Recent elucidation of mechanisms that cause cancer has led to discovery of novel key molecules and pathways which have have become successful targets for the treatments that eliminate only cancer cells. These so-called targeted therapies offer new hope for millions of cancer patients, as briefly reveiwed here focusing on different types of agents, like PARP, CDK, tyrosine kinase, farnysyl transferase and proteasome inhibitors, monoclonal antibodies and antiangiogenic agents.

Medical Treatment of Breast Cancer Bone Metastasis: From Bisphosphonates to Targeted Drugs

  • Erdogan, Bulent;Cicin, Irfan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1503-1510
    • /
    • 2014
  • Breast cancer bone metastasis causing severe morbidity is commonly encountered in daily clinical practice. It causes pain, pathologic fractures, spinal cord and other nerve compression syndromes and life threatening hypercalcemia. Breast cancer metastasizes to bone through complicated steps in which numerous molecules play roles. Metastatic cells disrupt normal bone turnover and create a vicious cycle to which treatment efforts should be directed. Bisphosphonates have been used safely for more than two decades. As a group they delay time to first skeletal related event and reduce pain, but do not prevent development of bone metastasis in patients with no bone metastasis, and also do not prolong survival. The receptor activator for nuclear factor ${\kappa}B$ ligand inhibitor denosumab delays time to first skeletal related event and reduces the skeletal morbidity rate. Radionuclides are another treatment option for bone pain. New targeted therapies and radionuclides are still under investigation. In this review we will focus on mechanisms of bone metastasis and its medical treatment in breast cancer patients.

Comparative Systematic Review of Korea Domestic and International Studies on Sensory Integration Therapy in Patients with Autism Spectrum Disorder

  • Cha, Sumin;Park, Sookyoung;Choi, Jeonghyun;Park, Juhyung;Jin, Yunho;Hong, Yonggeun
    • International Journal of Contents
    • /
    • v.15 no.3
    • /
    • pp.13-20
    • /
    • 2019
  • This systematic review compared Korean and international researches on sensory integration therapy in patients with autism spectrum disorder (ASD). We targeted studies on sensory integration therapy for patients with ASD published from January 2000 through July 2016. Specifically, we analyzed the papers that used the phrase 'sensory integration, autism' as keywords. There were fewer Korean studies of sensory integration therapy, and the diversity of research topics were limited, focusing mainly on case studies. There was no difference between the internal/external validity of Korean and those of international studies targeting the clinical environment and patients. Further study of a variety of aspects of sensory integration therapy is needed to gain high internal/external validity.

Triple Negative Breast Cancer

  • Cetin, Idil;Topcul, Mehmet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2427-2431
    • /
    • 2014
  • Triple-negative breast cancers (TNBC), characterized by absence of the estrogen receptor (ER) and progesterone receptor (PR) and lack of overexpression of human epidermal growth factor receptor 2 (HER2), have a poor prognosis. To overcome therapy limitations of TNBC, various new approaches are needed. This mini-review focuses on discovery of new targets and drugs which might offer new hope for TNBC patients.

Nanoparticles Promise New Methods to Boost Oncology Outcomes in Breast Cancer

  • Islamian, Jalil Pirayesh;Hatamian, Milad;Rashidi, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1683-1686
    • /
    • 2015
  • Different types of treatment are available for patients with breast cancer, the most being radiotherapy, chemotherapy, hormonal therapy and combination therapy. Recently, nanoparticles have been emerging as promising agents for cancer therapy and are being investigated as contrast agents, drug carriers, radiosensitizers and also for hyperthermia effects. In this review the focus is on approaches for targeted treatment of breast cancer by combining nanoparticles, chemodrugs and radiation. The availble data suggest the possibility of increased roles for combined therapy, particularly by reducing the dose of each treatment modality, and consequently minimizing related side effects.

Effects of Photobiomodulation on Stem Cells Important for Regenerative Medicine

  • Chang, So-Young;Carpena, Nathaniel T.;Kang, Bong Jin;Lee, Min Young
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.134-141
    • /
    • 2020
  • The use of stem cell therapy to treat various diseases has become a promising approach. The ability of stem cells to self-renew and differentiate can contribute significantly to the success of regenerative medical treatments. In line with these expectations, there is a great need for an efficient research methodology to differentiate stem cells into their specific targets. Photobiomodulation (PBM), formerly known as low-level laser therapy (LLLT), is a relatively non-invasive technique that has a therapeutic effect on damaged tissue or cells. Recent advances in adapting PBM to stem cell therapy showed that stem cells and progenitor cells respond favorably to light. PBM stimulates different types of stem cells to enhance their migration, proliferation, and differentiation in vitro and in vivo. This review summarizes the effects of PBM on targeted differentiation across multiple stem cell lineages. The analytical expertise gained can help better understand the current state and the latest findings in PBM and stem cell therapy.

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics

  • Kim, Eunhee G.;Kim, Kristine M.
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.493-509
    • /
    • 2015
  • Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris$^{(R)}$(anti-CD30-drug conjugate) and Kadcyla$^{(R)}$(anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.