Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.6.2427

Triple Negative Breast Cancer  

Cetin, Idil (Department of Radiobiology, Faculty of Science, Istanbul University)
Topcul, Mehmet (Department of Biology, Faculty of Science, Istanbul University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.6, 2014 , pp. 2427-2431 More about this Journal
Abstract
Triple-negative breast cancers (TNBC), characterized by absence of the estrogen receptor (ER) and progesterone receptor (PR) and lack of overexpression of human epidermal growth factor receptor 2 (HER2), have a poor prognosis. To overcome therapy limitations of TNBC, various new approaches are needed. This mini-review focuses on discovery of new targets and drugs which might offer new hope for TNBC patients.
Keywords
Triple negative breast cancer; poor prognosis; targeted therapy;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Perez-Caro M, Sanchez-Garcia I (2006). Killing time for cancer stem cells (csc): discovery and development of selective csc inhibitors. Curr Medicinal Chem, 13, 1719-25.   DOI   ScienceOn
2 Podo F, Buydens LMC, Degani H, et al (2010). Triple-negative breast cancer: Present challenges and new perspectives. Molec Oncol, 4, 209-29.   DOI   ScienceOn
3 Rakha EA, Elsheikh SE, Aleskandarany MA, et al (2009). Triplenegative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res, 15, 2302-10.   DOI   ScienceOn
4 Rakha EA, Tan DS, Foulkes WD, et al (2007). Are triple negative tumours and basal-like breast cancer synonymous? Breast Cancer Res, 9, 1-3.
5 Raymond E, Faivre S, Armand JP (2000). Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs, 60, 15-23.   DOI
6 Reis-Filho JS, Tutt AN (2008). Triple negative tumours: a critical review. Histopathology, 52, 108-18.
7 Rugo HS (2012). Inhibiting angiogenesis in breast cancer: the beginning of the end or the end of the beginning? J Clin Oncol, 30, 898-901   DOI   ScienceOn
8 Sethi S, Sarkar FH, Quratulain A, et al (2011). Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Transl Oncol, 4, 222-6.   DOI
9 Marotta LL, Almendro V, Marusyk A, et al (2011). The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24-stem cell-like breast cancer cells in human tumors. J Clin Invest, 121, 2723-35.   DOI   ScienceOn
10 Macdonald F, CHJ Ford, Casson AG (2004). Breast cancer. In 'Molecular Biology of Cancer', Eds Macdonald F, CHJ Ford, Casson AG. BIOS Scientific Publishers, London and New York, 139-63.
11 Malhotra GK, Zhao X, Band H, et al (2010). Histological, molecular and functional subtypes of breast cancers. Cancer Biol Therapy, 10, 955-60.   DOI
12 Marchio C, Natrajan R, Shiu KK, et al (2008). The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol, 216, 399-407.   DOI   ScienceOn
13 Martin AM, Weber BL (2000). Genetic and hormonal risk factors in breast cancer. J Nal Cancer Inst, 92, 1126-35.   DOI   ScienceOn
14 McMahon G (2000). VEGF receptor signaling in tumor angiogenesis. Oncologist, 5, 3-10.   DOI
15 Mendelsohn J, Baselga J (2006). Epidermal growth factor receptor targeting in cancer. Semin Oncol, 33, 369-85.   DOI   ScienceOn
16 Morales JC, Li L, Fattah FJ, et al (2013). Review of Poly (ADPRibose) Polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryotic Gene Expression, 23, 195-208.   DOI
17 Naujokat C (2012). Targeting human cancer stem cells with monoclonal antibodies. J Clin Cell Immunol, S5, 1-15.
18 O'Shaughnessy J, Dieras V, Glaspy J, et al (2009). Comparison of subgroup analyses of pfs from three phase iii studies of bevacizumab in combination with chemotherapy in patients with her2-negative metastatic breast cancer (MBC). Cancer Res, 69, 207.
19 Linderholm BK, Hellborg H, Johansson U, et al (2009). Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer. Ann Oncol, 20, 1639-46.   DOI   ScienceOn
20 Ji J, Lee MP, Kadota M, Zhang Y, et al (2011). Pharmacodynamic and pathway analysis of three presumed inhibitors of poly (ADP-ribose) polymerase: ABT-888, AZD2281, and BSI201 [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; Washington, DC. Philadelphia (PA): AACR; 2011. Abstract no. 4527.
21 Li C-Y, Zhang S, Zhang X-B, et al (2013). Clinicopathological and prognostic characteristics of triple-negative breast cancer (TNBC) in Chinese patients: a retrospective study. Asian Pac J Cancer Prev, 14, 3779-84.   DOI   ScienceOn
22 Linderholm B, Grankvist K, Wilking N, et al (2000). Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol, 18, 1423-31.
23 Linderholm B, Tavelin B, Grankvist K, et al (1998). Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol, 16, 3121-8.
24 Liu Y, Jiang Q-Y, Xin T, Cai L, Zhao C-H (2012). Clinical significance of basal-like breast cancer in Chinese Women in Heilongjiang Province. Asian Pac J Cancer Prev, 13, 2735-8.   DOI   ScienceOn
25 Lv M, Li B, Li Y, et al (2011). Predictive role of molecular subtypes in response to neoadjuvant chemotherapy in breast cancer patients in Northeast China. Asian Pac J Cancer Prev, 12, 2411-7.
26 Gold B, Dean M (2009). Breast Cancer Stem Cells. In 'Stem Cells and Cancer', Ed Majumder S. Springer, New York, 167-92.
27 Furberg H, Millikan R, Dressler L, Newman B, Geradts J (2001). Tumor characteristics in African American and white women. Breast Cancer Res Treat, 68, 33-43.   DOI   ScienceOn
28 Goldstein NI, Prewett M, Zuklys K, et al (1995). Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res, 1, 1311-18.
29 Ghafoor A, Jemal A, Ward E, et al (2003). Trends in breast cancer by race and ethnicity. CA Cancer J Clin, 53, 342-55.   DOI   ScienceOn
30 Goel S, Mani S, Perez-Soler R (2002). Tyrosine kinase inhibitors: a clinical perspective. Curr Oncol Rep, 4, 9-19.   DOI   ScienceOn
31 Hebert JR (2009). Epidemiology: identifying cancer's causes. In 'The Biology and Treatment of Cancer', Eds. Pardee AB, Stein GS. John Wiley and Sons, Inc. New Jersey, 223-55.
32 Hoeben A, Landuyt B, Highley MS, et al (2004). Vascular endothelial growth factor and angiogenesis. Pharmacol Rev, 56, 549-80.   DOI   ScienceOn
33 Hoeijmakers JH (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366-74.   DOI   ScienceOn
34 Hu Y, Fu L (2012). Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res, 2, 340-56.
35 Husain A, He G, Venkatraman ES, Spriggs DR (1998). BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum (II). Cancer Res, 58, 1120-3.
36 Colditz GA, Rosner BA, Chen WY, et al (2004). Risk Factors for Breast Cancer According to Estrogen and Progesterone Receptor Status. Freidlin B, Korn EL. J Natl Cancer Inst, 96, 218-28.   DOI   ScienceOn
37 Ch'ng ES, Sharif SET, Jaafar H (2012). Characteristics of invasive breast ductal carcinoma, NOS, diagnosed in a tertiary institution in the east coast of Malaysia with a focus on tumor angiogenesis. Asian Pac J Cancer Prev, 13, 4445-2.   DOI   ScienceOn
38 Conlin AK, Seidman AD (2008). Beyond cytotoxic chemotherapy for the first-line treatment of HER2-negative, hormoneinsensitive metastatic breast cancer: current status and future opportunities. Clin Breast Cancer, 8, 215-23.   DOI   ScienceOn
39 Choi J, Jung WH, Koo JS (2012). Clinicopathologic features of molecular subtypes of triple negative breast cancer based on immunohistochemical markers. Histol Histopathol, 27, 1481-93.
40 Ciardiello F, Tortora G (2001). A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res, 7, 2958-70.
41 Corkery B, Crown J, Clynes M, et al (2009). Epidermal growth factor receptor as a potential therapeutic target in triplenegative breast cancer. Ann Oncol, 20, 862-7.   DOI   ScienceOn
42 Elias AD (2010). Triple-negative breast cancer: a short review. Am J Clin Oncol, 33, 637-45.   DOI   ScienceOn
43 Fillmore CM, Kuperwasser C (2008). Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res, 10, 1-13.
44 Foekens JA, Peters HA, Grebenchtchikov N, et al (2001). High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. Cancer Res, 61, 5407-14.
45 Boyle P (2012). Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol, 23, 7-12.   DOI   ScienceOn
46 Baselga J, Averbuch SD (2000). ZD1839 Iressa as an anticancer agent. Drugs, 60, 33-40.   DOI
47 Baselga J (2000). New technologies in epidermal growth factor receptor-targeted cancer therapy. Signal, 1, 12-21.
48 Byrski T, Huzarski T, Dent R, et al (2009). Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat, 115, 359-63.   DOI   ScienceOn
49 Beiki O, Hall P, Ekbom A, Moradi T (2012). Breast cancer incidence and case fatality among 4.7 million women in relation to social and ethnic background: a population-based cohort study. Breast Cancer Res, 14, 5.
50 Brady-West DC, McGrowder DA (2011). Triple negative breast cancer: therapeutic and prognostic implications. Asian Pac J Cancer Prev, 12, 2129-33.
51 Burness ML, Grushko TA, Olopade OI (2010) Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker? Cancer J, 16, 23-32.   DOI   ScienceOn
52 Carey LA (2011). Directed therapy of subtypes of triple-negative breast cancer. Oncologist, 16, 71-8.
53 Carey LA, Perou CM, Livasy CA, et al (2006). Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA, 295, 2492-502.   DOI   ScienceOn
54 Cetin I, Topcul M (2012). Cancer stem cells in oncology. J BUON, 17, 644-8.
55 Shen SX, Weaver Z, Xu X, et al (1998). A targeted disruption of the murine brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene, 17, 3115-24.   DOI   ScienceOn
56 Ashworth A (2008). A synthetic lethal therapeutic approach: poly (ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol, 26, 3785-90.   DOI   ScienceOn
57 Bapat S, Collins A, Dean M, et al (2009). Cancer Stem Cells: Similarities and Variations in the Theme of Normal Stem Cells. In 'CANCER STEM CELLS Identification and Targets', Ed Sharmila Bapat. John Wiley and Sons, Inc., New Jersey, 1-26.
58 Trivers KF, Lund MJ, Porter PL, et al (2009). The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control, 20, 1071-82.   DOI   ScienceOn
59 Tan DS, Marchio C, Jones RL, et al (2008). Triple negative breast cancer: molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat, 111, 27-44.   DOI   ScienceOn
60 Shiobara M, Miyazaki M, Ito H, et al (2001). Enhanced polyadenosine diphosphate-ribosylation in cirrhotic liver and carcinoma tissues in patients with hepatocellular carcinoma. J Gastroenterol Hepatol, 16, 338-44.   DOI   ScienceOn
61 Underhill C, Toulmonde M, Bonnefoi H (2010). A review of PARP inhibitors: from bench to bedside. Ann Oncol, 22, 268-79.
62 Wang XZ, Weaver DT (2011). The ups and downs of DNA repair biomarkers for PARP inhibitor therapies. Am J Cancer Res, 1, 301-27.
63 Yang XR, Sherman ME, Rimm DL, et al (2007). Differences in risk factors for breast cancer molecular subtypes in a populationbased study. Cancer Epidemiol Biomarkers Prev, 16, 439-43.   DOI   ScienceOn
64 Zhang YW, Regairaz M, Seiler JA, et al (2011). Poly (ADPribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res, 39, 3607-20.   DOI   ScienceOn
65 Perou CM (2010). Molecular stratification of triple-negative breast cancers. Oncologist, 15, 39-48.   DOI   ScienceOn
66 Ossovskaya V, Wang Y, Budoff A, et al (2011). Exploring molecular pathways of triple-negative breast cancer. Genes Cancer, 2, 870-9.   DOI   ScienceOn
67 Pardee AB, Stein GS, Bronstein EA (2009). What goes wrong in cancer? In 'The Biology and Treatment of Cancer', Eds. Pardee AB, Stein GS. John Wiley and Sons, Inc., New Jersey, pp 3-19.
68 Cheang MC, Voduc D, Bajdik C, et al (2008). Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res, 14, 1368-76.   DOI   ScienceOn
69 Khokher S, Qureshi MU, Mahmood S, Nagi AH (2013). Association of immunohistochemically defined molecular subtypes with clinical response to presurgical chemotherapy in patients with advanced breast cancer. Asian Pac J Cancer Prev, 14, 3223-8.   DOI   ScienceOn
70 Zubeda S, Kaipa PR, Shaik NA (2013). HER-2/neu status: a neglected marker of prognostication and management of breast cancer patients in India. Asian Pac J Cancer Prev, 14, 2231-5.   DOI   ScienceOn