• Title/Summary/Keyword: Targeted agent

Search Result 69, Processing Time 0.022 seconds

Efficacy and Safety of Selumetinib Compared with Current Therapies for Advanced Cancer: a Meta-analysis

  • Shen, Chen-Tian;Qiu, Zhong-Ling;Luo, Quan-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2369-2374
    • /
    • 2014
  • Background and Aim: Selumetinib is a promising and interesting targeted therapy agent as it may reverse radioiodine uptake in patients with radioiodine-refractory differentiated thyroid cancer. We conduct this metaanalysis to compare the efficacy and safety of selumetinib with current therapies in patients with advanced cancer. Methods: An electronic search was conducted using PubMed/ Medicine, EMBASE and Cochrane library databases. Statistical analyses were carried out using either random-effects or fixed-effects models according to the heterogeneity of eligible studies. Results: Six eligible trials involved 601 patients were identified. Compared with current therapies, treatment schedules with selumetinib did not improve progression free survival (hazard ratio, 0.91; 95%CI 0.70-1.17, P= 0.448), but did identify better clinical benefits (odds ratio, 1.24; 95%CI 0.69-2.24, P = 0.472) and less disease progression (hazard ratio, 0.72; 95%CI 0.51-1.00, P = 0.052) though its impact was not statistically significant. Sub-group analysis resulted in significantly improved progression free survival (hazard ratio, 0.61; 95%CI 0.49-0.57, P = 0.00), clinical benefits (odds ratio, 3.04; 95%CI 1.60-5.77, P = 0.001) and reduced disease progression (hazard ratio, 0.35; 95%CI 0.18-0.67, P = 0.001) in patients administrated selumetinib. Dermatitis acneiform (risk ratio, 9.775; 95%CI 3.143-30.395, P = 0.00) and peripheral edema (risk ratio, 2.371; 95%CI 1.690-3.327, P = 0.00) are the most frequently observed adverse effects associated with selumetinib. Conclusions: Compared with current chemotherapy, selumetinib has modest clinical activity as monotherapy in patients with advanced cancer, but combinations of selumetinib with cytotoxic agents in patients with BRAF or KRAS mutations hold great promise for cancer treatment. Dermatitis acneiform and peripheral edema are the most frequently observed adverse effects in patients with selumetinib.

Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells

  • Kim, Yu-Ri;Eom, Ki-Seong
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.296-306
    • /
    • 2014
  • There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-${\kappa}B$. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis.

Anti-apoptotic effects of autophagy via ROS regulation in microtubule-targeted and PDGF-stimulated vascular smooth muscle cells

  • Park, Hyun-Soo;Han, Joo-Hui;Jung, Sang-Hyuk;Lee, Do-Hyung;Heo, Kyung-Sun;Myung, Chang-Seon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.349-360
    • /
    • 2018
  • Autophagy has been studied as a therapeutic strategy for cardiovascular diseases. However, insufficient studies have been reported concerning the influence of vascular smooth muscle cells (VSMCs) through autophagy regulation. The aim of the present study was to determine the effects of VSMCs on the regulation of autophagy under in vitro conditions similar to vascular status of the equipped micro-tubule target agent-eluting stent and increased release of platelet-derived growth factor-BB (PDGF-BB). Cell viability and proliferation were measured using MTT and cell counting assays. Immunofluorescence using an $anti-{\alpha}-tubulin$ antibody was performed to determine microtubule dynamic formation. Cell apoptosis was measured by cleavage of caspase-3 using western blot analysis, and by nuclear fragmentation using a fluorescence assay. Autophagy activity was assessed by microtubule-associated protein light chain 3-II (LC-II) using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured using $H_2DCFDA$. The proliferation and viability of VSMCs were inhibited by microtubule regulation. Additionally, microtubule-regulated and PDGF-BB-stimulated VSMCs increased the cleavage of caspase-3 more than only the microtubule-regulated condition, similar to that of LC3-II, implying autophagy. Inhibitory autophagy of microtubule-regulated and PDGF-BB-stimulated VSMCs resulted in low viability. However, enhancement of autophagy maintained survival through the reduction of ROS. These results suggest that the apoptosis of conditioned VSMCs is decreased by the blocking generation of ROS via the promotion of autophagy, and proliferation is also inhibited. Thus, promoting autophagy as a therapeutic target for vascular restenosis and atherosclerosis may be a good strategy.

Antibacterial Effects of Salt with Natural Antimicrobial Substances against Foodborne Pathogens (천연 항균물질이 첨가된 소금의 식중독 세균에 대한 항균효과)

  • Hyun, Jeong-Eun;Park, Se-Eun;Lee, Seo-Hyeon;Lee, Yeon-Jin;Jang, Min-Kyung;Moon, Sung-Kwon;Lee, Sun-Young
    • Journal of the FoodService Safety
    • /
    • v.1 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • Salt is a common seasoning agent used in various processed foods, especially in kimchi and salted seafood (jeotgal). This study was conducted to investigate the efficacy of salt with antimicrobial substances (acetic acid, garlic extract, carvacrol, nisin, thymol, and their combination (acetic acid+nisin+thymol)) on improvement of antibacterial effects of salt against foodborne pathogens. Salt (10%) was prepared using six different types of 0.2% natural antimicrobial substances. The antibacterial effect of salt combined with natural antimicrobial substances was evaluated against foodborne pathogens using the broth micro-dilution method and growth curve plotted using absorbance measurements. For the five foodborne pathogens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of salt without antimicrobial substances as control were in the range of 24~>50,000 ㎍/mL and >50,000 ㎍/mL, respectively. Salt with nisin, thymol, or garlic extract showed strong inhibitory effects and their MIC against L. monocytogenes were 49, 12,500, and 24 ㎍/mL, respectively. In particular, salt with nisin showed inhibitory activities against Gram-positive bacteria. However, all the antimicrobial substances were less effective against Gram-negative bacteria such as E. coli O157:H7 and S. Typhimurium than Gram-positive bacteria. These results could be used for the development of salt with natural antimicrobial substances especially targeted against L. monocytogenes. This would enable the lowering of saline concentration while improving the storability of food.

Fusion anti-cancer drugs of cisplatin analogue and fatty acids for multi-targeted cancer treatment (시스플라틴과 지방산을 결합한 퓨전 항암제)

  • Byeon, Hong-Ju;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1386-1392
    • /
    • 2018
  • Cispatin has become one of the most widely used anticancer drugs for decades. One of the drawback of cisplatin (II) complex is that it not only targets cancerous cells but also normal cells causing several serious side effects in patients. We have synthesized Pt(IV) complex that are needed to have the ability to kill target cells selectively in a short time before drug resistance develops. By introducing PDK inhibitor, butyric acid and valproic acid, on Pt complex, two fusion anti-cancer agents 3 and 4 have been synthesized and characterized their structures by nmr and mass spectrometer. MTT assay was performed with $Pt(IV)-Bu_2$ 3 and $Pt(IV)-Val_2$ 4 against MCF-7 cell line. As a result, cisplatin, Pt(IV) complexes 3 and 4 were treated, cell viabilities at $50{\mu}M$ cencentration were decreased to 39%, 54% and 84% respectively.

A Comparison of the Ability of Fungal Internal Transcribed Spacers and D1/D2 Domain Regions to Accurately Identify Candida glabrata Clinical Isolates Using Sequence Analysis

  • Kang, Min-Ji;Choi, Yoon-Sung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.430-434
    • /
    • 2018
  • Candida glabrata is the second most prevalent causative agent for candidiasis following C. albicans. The opportunistic yeast, C. glabrata, is able to cause the critical bloodstream infections in hospitalized patients. Conventional identification methods for yeasts are often time consuming and labor intensive. Therefore, recent studies on sequence-based identification have been conducted. Recently, sequencing the D1/D2 domain of the large subunit ribosomal RNA gene and the internal transcribed spacers (ITS) 1 and ITS2 regions of the ribosomal DNA has proven useful for DNA-based identification of most species of fungi. In the present study, therefore, fungal ITS and D1/D2 domain regions were targeted and analyzed by DNA sequencing for the accurate identification of C. glabrata clinical isolates. A total of 102 C. glabrata clinical isolates from various clinical samples including bloodstream, catheterized urine, bile and other body fluids were used in the study. The results of the DNA sequence analysis showed that the mean standard deviation of species identity percent score between ITS and D1/D2 domain regions was $97.8%{\pm}2.9$ and $99.7%{\pm}0.46$, respectively. These results revealed that the D1/D2 domain region might be a better target for identifying C. glabrata clinical isolates based on DNA sequences than the ITS1 and ITS2 regions. However, in order to evaluate the usefulness of D1/D2 domain region for species identification of all Candida species, other Candida species such as C. albicans, C. tropicalis, C. dubliniensis, and C. krusei should be verified in further studies additionally.

Apoptosis and inhibition of human epithelial cancer cells by ZnO nanoparticles synthesized using plant extract

  • Koutu, Vaibhav;Rajawat, Shweta;Shastri, Lokesh;Malik, M.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • The present research work reports in-vitro anti-cancer activity of biologically synthesized ZnO nanoparticles (ZnO NPs) against human carcinoma cells viz SCC-40, SK-MEL-2 and SCC-29B using Sulforhodamine-B (SRB) Assay. ZnO NPs were synthesized by a unique and novel biological route using Temperature-gradient phenomenon where the extract of combination of Catharanthus roseus (L.) G. Don (C. roseus), Azadirachta indica (A. indica), Ficus religiosa (F. religiosa) and NaOH solution were used as synthesis medium. The morphology of the ZnO NPs was characterized by Transmission Electron Microscopy (TEM). TEM images reveal that particle size of the samples reduces from 76 nm to 53 nm with the increase in reaction temperature and 68 nm to 38 nm with the increase in molar concentration of NaOH respectively. XRD study confirms the presence of elements and reduction in crystallite size with increase in reaction temperature and NaOH concentration. The diffraction peaks show broadening and a slight shift towards lower Bragg angle ($2{\theta}$) which represents the reduction in crystallite size as well as presence of uniform strain. The FTIR spectra of the extract show transmittance peak fingerprint of Zn-O bond and presence of bioactive molecules These NPs exhibit inhibition greater than 50% for SCC-40, SK-MEL-2 and SCC-29B cell lines and more than 50% cell kill for SCC-29B cells at concentrations < $80{\mu}g/ml$. Nanoparticles with smallest size have shown better anti-cancer activity and peculiar cell-selectivity. The combination of extracts of these plants with ZnO NPs can be used in targeted drug delivery as an effective anti-cancer agent, a potential application in cancer treatment.

A Study on the Multiplexing of a Communication Line for the Physical Load Balancing-Based Prevention of Infringement (물리적 부하 균형(Load-balancing) 기반의 침해방지를 위한 통신라인 다중화에 관한 연구)

  • Choi, Hee-Sik;Seo, Woo-Seok;Jun, Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.81-91
    • /
    • 2012
  • Presently in 2011, there are countless attacking tools oriented to invading security on the internet. And most of the tools are possible to conduct the actual invasion. Also, as the program sources attacking the weaknesses of PS3 were released in 2010 and also various sources for attacking agents and attacking tools such as Stuxnet Source Code were released in 2011, the part for defense has the greatest burden; however, it can be also a chance for the defensive part to suggest and develop methods to defense identical or similar patterned attacking by analyzing attacking sources. As a way to cope with such attacking, this study divides the network areas targeted for attack based on load balancing by the approach gateways and communication lines according to the defensive policies by attacking types and also suggests methods to multiply communication lines. The result of this paper will be provided as practical data to realize defensive policies based on high hardware performances through enhancing the price competitiveness of hardware infrastructure with 2010 as a start.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Targeting Catecholamines to Develop New Drugs for Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애 치료제 개발을 위한 카테콜아민계 표적화)

  • Sung-Cherl Jung;Chang-Hwan Cho;Hye-Ji Kim;Eun-A Ko;Min-Woo Ha;Oh-Bin Kwon
    • Journal of Medicine and Life Science
    • /
    • v.18 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • The prevalence of attention deficit hyperactivity disorder (ADHD), a developmental neuropsychiatric disorder, is high among children and adolescents. The pathogenesis of ADHD is mediated with genetic, biological, and environmental factors. Most therapeutic drugs for ADHD have so far targeted biological causes, primarily by regulating catecholaminergic neurotransmitters. However, ADHD drugs that are clinically treated have various problems in their addictiveness and drug stability; thus, it is recommended that efficacy and safety should be secured through simultaneous prescription of multiple drugs rather than a single drug treatment. Accordingly, it is necessary to develop drugs that newly target pathogenic mechanisms of ADHD. In this study, we attempt to confirm the possibility of developing new drugs by reviewing dopamine-related developmental mechanisms of neurons and their correlation with ADHD. Histone deacetylase inhibitors (HDACi) can regulate the concentration of intracellular dopamine in neurons by expressing vesicular monoamine transporter 2 and inducing the exocytosis of neurotransmitters to the synaptic cleft, thereby promoting the development of neurons and signal transmission. This cellular modulation of HDACi is expected to treat ADHD by regulating endogenous catecholamines such as dopamine. Although studies are still in the preclinical stage, HDAC inhibitors clearly have potential as a therapeutic agent with low addictiveness and high efficacy for ADHD treatment.