• Title/Summary/Keyword: Target region

Search Result 1,209, Processing Time 0.025 seconds

A Method to Detect Multiple Plane Areas by using the Iterative Randomized Hough Transform(IRHT) and the Plane Detection (평면 추출셀과 반복적 랜덤하프변환을 이용한 다중 평면영역 분할 방법)

  • Lim, Sung-Jo;Kim, Dae-Gwang;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2086-2094
    • /
    • 2008
  • Finding a planar surface on 3D space is very important for efficient and safe operation of a mobile robot. In this paper, we propose a method using a plane detection cell (PDC) and iterative randomized Hough transform (IRHT) for finding the planar region from a 3D range image. First, the local planar region is detected by a PDC from the target area of the range image. Each plane is then segmented by analyzing the accumulated peaks from voting the local direction and position information of the local PDC in Hough space to reduce effect of noises and outliers and improve the efficiency of the HT. When segmenting each plane region, the IRHT repeatedly decreases the size of the planar region used for voting in the Hough parameter space in order to reduce the effect of noise and solve the local maxima problem in the parameter space. In general, range images have many planes of different normal directions. Hence, we first detected the largest plane region and then the remained region is again processed. Through this procedure, we can segment all planar regions of interest in the range image.

Study on Measurement of Flood Risk and Forecasting Model (홍수 위험도 척도 및 예측모형 연구)

  • Kwon, S.H.;Oh, H.S.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • There have been various studies on measurements of flood risk and forecasting models. For river and dam region, PDF and FVI has been proposed for measurement of flood risk and regression models have been applied for forecasting model. For Bo region unlikely river or dam region, flood risk would unexpectedly increase due to outgoing water to keep water amount under the designated risk level even the drain system could hardly manage the water amount. GFI and general linear model was proposed for flood risk measurement and forecasting model. In this paper, FVI with the consideration of duration on GFI was proposed for flood risk measurement at Bo region. General linear model was applied to the empirical data from Bo region of Nadong river to derive the forecasting model of FVI at three different values of Base High Level, 2m, 2.5m and 3m. The significant predictor variables on the target variable, FVI were as follows: ground water level based on sea level with negative effect, difference between ground altitude of ground water and river level with negative effect, and difference between ground water level and river level after Bo water being filled with positive sign for quantitative variables. And for qualitative variable, effective soil depth and ground soil type were significant for FVI.

Control of an Omni-directional Mobile Robot Based on Camera Image (카메라 영상기반 전방향 이동 로봇의 제어)

  • Kim, Bong Kyu;Ryoo, Jung Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • In this paper, an image-based visual servo control strategy for tracking a target object is applied to a camera-mounted omni-directional mobile robot. In order to get target angular velocity of each wheel from image coordinates of the target object, in general, a mathematical image Jacobian matrix is built using a camera model and a mobile robot kinematics. Unlike to the well-known mathematical image Jacobian, a simple rule-based control strategy is proposed to generate target angular velocities of the wheels in conjunction with size of the target object captured in a camera image. A camera image is divided into several regions, and a pre-defined rule corresponding to the target-located image region is applied to generate target angular velocities of wheels. The proposed algorithm is easily implementable in that no mathematical description for image Jacobian is required and a small number of rules are sufficient for target tracking. Experimental results are presented with descriptions about the overall experimental system.

Effects of time-to-go freezing on PN guidance loop stability

  • Rew, Dong-Young;Tahk, Min-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.283-286
    • /
    • 1995
  • Due to finite bandwidth of missile dynamics, guidance commands in PN guidance tend to diverage as the missile approaches to the target. In this paper, a new method based on the short-time stability theorem is introduced to extend the stability region.

  • PDF

Three-Dimensional Flow Characteristics of a Circular Impinging Jet Normally Oriented to Crossflow (주유동에 수직으로 분사되는 원형 충돌제트의 3차원 유동특성)

  • Lee, Sang Woo;Jeong, Chul Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1735-1745
    • /
    • 1998
  • Oil-film surface flow visualizations and three-dimensional flow measurements using a straight five-hole probe have been conducted for a circular impinging jet which is normally oriented to the crossflow in a channel. Throughout the experiments, the ratio of channel height to injection hole diameter, H/D, is fixed to be 1.0, and blowing ratio is varied to be 1.0, 2.0, 3.0 and 4.0. From the surface flow visualizations for both top wall(target plate) and bottom wall, impinging jet region on the target plate can be clearly identified, and for the small value of H/D = 1.0, presence of the bottom wall changes the near-hole flow structure, significantly. The three-dimensional flow measurements show that in the dawnstream region of the injection hole, there exist a pair of counter-rotating vortices, called "scarf vortices", and the strength of the vortices strongly depends on the blowing ratio. In addition, a new flow model in the flow symmetry plane has been proposed for H/D = 1.0.

Probing the movement of helix F region and the stepwise insertion of reactive site loop in $\alpha_1$-Antitrypsin variants

  • Baek, Je-Hyun;Lee, Cheolju;Kang, Un-Beom;Kim, Joon;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.63-63
    • /
    • 2003
  • $\alpha$$_1$-Antityrpsin is a member of the serine protease inhibitor (SERPIN) family that shares a common tertiary structure. The reactive site loop (RSL) of serpins is exposed at one end of the molecule for protease binding. Upon cleavage by a target protease, the RSL is inserted into the major $\beta$-sheet A, which is a necessary process for formation of a tight inhibitory complex. Various biochemical and structural studies suggest that the rate of the RSL insertion upon binding a target protease is critical for inhibitory activity, and it is thought that helix F region (thFs3A and helix F) located in front of $\beta$-sheet A, should be lifted for the loop insertion during complex formation.

  • PDF

MLSE-Net: Multi-level Semantic Enriched Network for Medical Image Segmentation

  • Di Gai;Heng Luo;Jing He;Pengxiang Su;Zheng Huang;Song Zhang;Zhijun Tu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2458-2482
    • /
    • 2023
  • Medical image segmentation techniques based on convolution neural networks indulge in feature extraction triggering redundancy of parameters and unsatisfactory target localization, which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the conservative transformer and to compensate for the feature loss in the down-sampling process. In the CDT module, the Cbam attention module is adopted to highlight the feature regions by blending the intersection of attention mechanisms implicitly, and the Dilated convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous convolution blocks to display the expanded perceptual field explicitly. In addition, MultiHead Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently distinguish the target region from the background region. Extensive experiments on medical image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed network outperforms existing advanced methods in terms of both objective evaluation and subjective visual performance.

Failure analysis of damaged tungsten monoblock components of upper divertor outer target in EAST fusion device

  • Kang Wang;Ya Xi;Xiang Zan;Dahuan Zhu;Laima Luo;Rui Ding;Yucheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2307-2316
    • /
    • 2024
  • A melting failure of W monoblock components of the upper divertor outer target in EAST occurred during the plasma campaigns in 2019. The failure characters and microstructure evolution of the failed W monoblock have been well investigated on one string (W436 string). Near the strike point region where heat flux density is highest, macroscopic cracks and severe surface damage such as dimensional change, melting and solidification are visible in several W monoblocks. At the same time, debonding, melting and migration of Cu/CuCrZr cooling tube components introduced fatal damage to the structure and function. The heat-induced microstructure evolution in the rest part has been examined via hardness tests and metallography. From the heat flux surface to the cooling tube, hardness increased gradually and the recrystallized grains could be found in the region with the highest temperature, while recrystallization grains also appear in some W monoblocks near the cooling tube area. The detailed microstructure has been investigated by metallography and EBSD. Such cases in EAST provide experiences on the extreme condition of accidental loss of coolant or higher discharge power in future devices.

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

Influence of Couch and Collimator on Dose Distribution of RapidArc Treatment Planning for Prostate Cancer in Radiation Therapy (치료테이블과 콜리메이터가 전립선암 래피드아크 치료계획의 선량분포에 미치는 영향)

  • Kim, Hyung-Dong;Kim, Byung-Young;Kim, Sung-Jin;Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We investigated the influence of photon energy, couch and collimator angle differences between arcs on dose distribution of RapidArc treatment planning for prostate cancer. RapidArc plans were created for 6 MV and 10 MV photons using 2 arcs coplanar and noncoplanar fields. The collimator angle differences between two arcs were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The plans were optimized using same dose constrains for target and OAR (organ at risk). To evaluate the dose distribution, plans were analyzed using CI (conformity index), HI (homogeneity index), QOC (quality of coverage), etc. Photon energy, couch and collimator angle differences between arcs had a little influence on the target and OAR. The difference of dosimetric indices was less than 3.6% in the target and OAR. However, there was significant increase in the region exposed to low dose. The increase of V15% in the femur was 6.4% (left) and 5.5% (right) for the 6 MV treatment plan and 23.4% (left), 24.1% (right) for the noncoplanar plan. The increase of V10% in the Far Region distant from target was 54.2 cc for the 6 MV photon energy, 343.4 cc for the noncoplanar and 457.8 cc for the no collimator rotation between arcs.