• 제목/요약/키워드: Target region

Search Result 1,209, Processing Time 0.029 seconds

Infrared Target Extraction Using Weighted Information Entropy and Adaptive Opening Filter

  • Bae, Tae Wuk;Kim, Hwi Gang;Kim, Young Choon;Ahn, Sang Ho
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1023-1031
    • /
    • 2015
  • In infrared (IR) images, near targets have a transient distribution at the boundary region, as opposed to a steady one at the inner region. Based on this fact, this paper proposes a novel IR target extraction method that uses both a weighted information entropy (WIE) and an adaptive opening filter to extract near finely shaped targets in IR images. Firstly, the boundary region of a target is detected using a local variance WIE of an original image. Next, a coarse target region is estimated via a labeling process used on the boundary region of the target. From the estimated coarse target region, a fine target shape is extracted by means of an opening filter having an adaptive structure element. The size of the structure element is decided in accordance with the width information of the target boundary and mean WIE values of windows of varying size. Our experimental results show that the proposed method obtains a better extraction performance than existing algorithms.

Extraction of Infrared Target based on Gaussian Mixture Model

  • Shin, Do Kyung;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.332-338
    • /
    • 2013
  • We propose a method for target detection in Infrared images. In order to effectively detect a target region from an image with noises and clutters, spatial information of the target is first considered by analyzing pixel distributions of projections in horizontal and vertical directions. These distributions are represented as Gaussian distributions, and Gaussian Mixture Model is created from these distributions in order to find thresholding points of the target region. Through analyzing the calculated Gaussian Mixture Model, the target region is detected by eliminating various backgrounds such as noises and clutters. This is performed by using a novel thresholding method which can effectively detect the target region. As experimental results, the proposed method has achieved better performance than existing methods.

  • PDF

Radar target recognition using Gaussian mixture model over wide-angular region (Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식)

  • 서동규;김경태;김효태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

Selective coding scheme using global/local motion information (전역/지역 움직임 정보를 이용한 선택적 부호화 기법)

  • 이종배;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.834-847
    • /
    • 1996
  • A selective coding scheme is proposed that describes a method for coding image sequences distinguishing bits between background and target region. The suggested method initially estimates global motion parameters and local motion vectors. Then segmentation is performed with a hierarchical clustering scheme and a quadtree algorithm in order to divide the processing image into the backgraound and target region. Finally image coding is done by assigning more bits to the target region and less bits to background so that the target region may be reconstructed with high quality. Simulations show that the suggested algorithm performs well especially in the circumstances where background changes and target regionis small enough compared with that of background.

  • PDF

Target Trackings Using x-y Coupled Confidence Region in Multi-target Tracking System (x-y축이 결합된 신뢰구간을 이용한 다중표적 추적시스템의 설계)

  • Lee, Yeon-Seok;Jo, Jang-Lae;Jeon, Chil-hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1226-1230
    • /
    • 2001
  • Multi-target tracking systems need to tracking several targets simultaneously. To track a target among the measurements of several targets, data association is needed. In this paper, a method using the cou-pled confidence region of predicted target position is proposed. The proposed method shows good performance in simulations of multi-target tracking systems.

  • PDF

Fast Computation of the Visibility Region Using the Spherical Projection Method

  • Chu, Gil-Whoan;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • To obtain visual information of a target object, a camera should be placed within the visibility region. As the visibility region is dependent on the relative position of the target object and the surrounding object, the position change of the surrounding object during a task requires recalculation of the visibility region. For a fast computation of the visibility region so as to modify the camera position to be located within the visibility region, we propose a spherical projection method. After being projected onto the sphere the visibility region is represented in $\theta$-$\psi$ spaces of the spherical coordinates. The reduction of calculation space enables a fast modification of the camera location according to the motion of the surrounding objects so that the continuous observation of the target object during the task is possible.

Shape Extraction of Near Target Using Opening Operator with Adaptive Structure Element in Infrared hnages (적응적 구조요소를 이용한 열림 연산자에 의한 적외선 영상표적 추출)

  • Kwon, Hyuk-Ju;Bae, Tae-Wuk;Kim, Byoung-Ik;Lee, Sung-Hak;Kim, Young-Choon;Ahn, Sang-Ho;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.546-554
    • /
    • 2011
  • Near targets in the infrared (IR) images have the steady feature for inner region and the transient feature for the boundary region. Based on these features, this paper proposes a new method to extract the fine target shape of near targets in the IR images. First, we detect the boundary region of the candidate targets using the local variance weighted information entropy (WIE) of the original images. And then, a coarse target region can be estimated based on the labeling of the boundary region. For the coarse target region, we use the opening filter with an adaptive structure element to extract the fine target shape. The decision of the adaptive structure element size is optimized for the width information of target boundary by calculating the average WIE in the enlarged windows. The experimental results show that a proposed method has better extraction performance than the previous threshold algorithms.

CORRELATION SEARCH METHOD WITH THIRD-ORDER STATISTICS FOR COMPUTING VELOCITIES FROM MEDICAL IMAGES

  • Kim, D.;Lee, J.H.;Oh, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.9-12
    • /
    • 1991
  • The correlation search method yields velocity information by tracking scatter patterns between medical image frames. The displacement vector between a target region and the best correlated search region indicates the magnitude and direction of the inter-frame motion of that particular region. However, if the noise sources in the target region and the search region are correlated Gaussian, then the cross-correlation technique fails to work well because it estimates the cross-correlation of both signals and noises. In this paper we develop a new correlation search method which seeks the best correlated third-order statistics between a target and the search region to suppress the effect of correlated Gaussian noise sources. Our new method yields better estimations of velocity than the conventional cross-correlation method.

  • PDF

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

Real-time Small Target Detection using Local Contrast Difference Measure at Predictive Candidate Region (예측 후보 영역에서의 지역적 대비 차 계산 방법을 활용한 실시간 소형 표적 검출)

  • Ban, Jong-Hee;Wang, Ji-Hyeun;Lee, Donghwa;Yoo, Joon-Hyuk;Yoo, Seong-eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • In This Paper, we find the Target Candidate Region and the Location of the Candidate Region by Performing the Morphological Difference Calculation and Pixel Labeling for Robust Small Target Detection in Infrared Image with low SNR. Conventional Target Detection Methods based on Morphology Algorithms are low in Detection Accuracy due to their Vulnerability to Clutter in Infrared Images. To Address the Problem, Target Signal Enhancement and Background Clutter Suppression are Achieved Simultaneously by Combining Moravec Algorithm and LCM (Local Contrast Measure) Algorithm to Classify the Target and Noise in the Candidate Region. In Addition, the Proposed Algorithm can Efficiently Detect Multiple Targets by Solving the Problem of Limited Detection of a Single Target in the Target Detection method using the Morphology Operation and the Gaussian Distance Function Which were Developed for Real time Target Detection.