• 제목/요약/키워드: Target genes

검색결과 959건 처리시간 0.025초

네트워크 약리학 분석을 통한 사군자탕(四君子湯)의 뇌경색 억제 기전 예측 (Prediction of cerebral infarction suppression mechanism of the Sagunja-Tang through network pharmacology analysis)

  • 임지연;이병호;조수인
    • 대한한의학방제학회지
    • /
    • 제30권4호
    • /
    • pp.293-304
    • /
    • 2022
  • Objectives : Sagunja-Tang is a famous prescription used in Korean medicine for the purpose of promoting vital energy, and there are few studies using Sagunja-Tang on cerebrovascular diseases yet. As previous studies confirmed that Sagunja-tang is highly likely to be used effectively for stroke, this study was intended to predict the mechanism through which Sagunja-tang would act effectively on stroke. Methods : In this study, a network pharmacology analysis method was used, and oral bioavailability (OB), drug likeness (DL), Caco-2 and BBB permeability were utilized to select compounds with potential activity. For the values of each variable used in this study, OB ≥ 30%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ 0.3 were applied. Using the above variables, the relations between target genes and diseases that are presumed to be involved in the selected bioavailable compounds were constructed in a network format, and proteins thought to play a major role were identified. Results : Among the compounds included in Sagunja-Tang, 26 bioavailable compounds were selected and it was confirmed that these compounds can be effectively used in cerebrovascular diseases such as Alzheimer's disease and stroke. These compounds are considered to act on proteins related in cell death and growth. The most important mechanism of action was predicted to be apoptosis, and the protein that is thought to play the most key action in this mechanism was caspase-3. Conclusions : In our future study, Sagunja-Tang will be used in an ischemic stroke mouse model, and the mechanism of action will be explored focusing on apoptosis and cell proliferation.

Suppression of the Toll-like receptors 3 mediated pro-inflammatory gene expressions by progenitor cell differentiation and proliferation factor in chicken DF-1 cells

  • Hwang, Eunmi;Kim, Hyungkuen;Truong, Anh Duc;Kim, Sung-Jo;Song, Ki-Duk
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.123-134
    • /
    • 2022
  • Toll-like receptors (TLRs), as a part of innate immunity, plays an important role in detecting pathogenic molecular patterns (PAMPs) which are structural components or product of pathogens and initiate host defense systems or innate immunity. Precise negative feedback regulations of TLR signaling are important in maintaining homeostasis to prevent tissue damage by uncontrolled inflammation during innate immune responses. In this study, we identified and characterized the function of the pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a negative regulator for TLR signal-mediated inflammation in chicken. Bioinformatics analysis showed that the structure of chicken PPDPF evolutionarily conserved amino acid sequences with domains, i.e., SH3 binding sites and CDC-like kinase 2 (CLK2) binding sites, suggesting that relevant signaling pathways might contribute to suppression of inflammation. Our results showed that stimulation with polyinosinic:polycytidylic acids (Poly [I:C]), a synthetic agonist for TLR3 signaling, increased the mRNA expression of PPDPF in chicken fibroblasts DF-1 but not in chicken macrophage-like cells HD11. In addition, the expression of pro-inflammatory genes stimulated by Poly(I:C) were reduced in DF-1 cells which overexpress PPDPF. Future studies warrant to reveal the molecular mechanisms responsible for the anti-inflammatory capacity of PPDPF in chicken as well as a potential target for controlling viral resistance.

KIF26B-AS1 Regulates TLR4 and Activates the TLR4 Signaling Pathway to Promote Malignant Progression of Laryngeal Cancer

  • Li, Li;Han, Jiahui;Zhang, Shujia;Dong, Chunguang;Xiao, Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권10호
    • /
    • pp.1344-1354
    • /
    • 2022
  • Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.

Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring

  • Zhou, Xiaoling;Yan, Qiongxian;Liu, Liling;Chen, Genyuan;Tang, Shaoxun;He, Zhixiong;Tan, Zhiliang
    • Animal Bioscience
    • /
    • 제35권6호
    • /
    • pp.847-857
    • /
    • 2022
  • Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were down-regulated (p<0.05) in the restricted offspring. Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

Clinical and molecular characteristics of Korean children with Cornelia de Lange syndrome

  • Dayun Kang;Hwa Young Kim;Jong-Hee Chae;Jung Min Ko
    • Journal of Genetic Medicine
    • /
    • 제19권2호
    • /
    • pp.85-93
    • /
    • 2022
  • Purpose: Cornelia de Lange syndrome (CdLS) is a rare genetically heterogeneous disorder caused by genetic variants of the cohesin complex. However, the diverse genetic etiologies and their phenotypic correlations in Korean patients with CdLS are still largely unknown. Hence, this study aimed to clarify the clinical characteristics and genetic background of Korean patients with CdLS. Materials and Methods: The medical records of 15 unrelated patients (3 males and 12 females) genetically confirmed to have CdLS were retrospectively reviewed. All individuals were diagnosed with CdLS using target gene analysis, whole-exome sequencing, and/or chromosomal microarray analysis. The clinical score (CS) was calculated to assess disease severity. Results: The median age at diagnosis was 1.7 (range, 0.0-11.8) years, and median follow-up duration was 3.8 (range, 0.4-11.7) years. Eight (53.3%) patients showed classic phenotypes of CdLS, two (13.3%) showed non-classic phenotypes, and five (33.3%) had other phenotypes sharing limited signs of CdLS. Fifteen causative variants were identified: NIPBL in five (33.3%, including 3 males), SMC1A in three (20.0%), SMC3 in three (20.0%), and HDAC8 in four (26.7%) patients. The CS was significantly higher in the NIPBL group than in the non-NIPBL group (14.2±1.3 vs. 8.7±2.9, P<0.001). Conclusion: We identified the clinical and genetic heterogeneity of CdLS in Korean patients. Patients with variants of NIPBL had a more distinctive phenotype than those carrying variants of other cohesin complex genes (SMC1A, SMC3, and HDAC8). However, further studies are warranted to understand the pathogenesis of CdLS as a cohesinopathy and its genotype-phenotype correlations.

Gold Nanoparticle and Polymerase Chain Reaction (PCR)-Based Colorimetric Assay for the Identification of Campylobacter spp. in Chicken Carcass

  • Seung-Hwan Hong;Kun-Ho Seo;Sung Ho Yoon;Soo-Ki Kim;Jungwhan Chon
    • 한국축산식품학회지
    • /
    • 제43권1호
    • /
    • pp.73-84
    • /
    • 2023
  • Campylobacteriosis is a common cause of gastrointestinal disease. In this study, we suggest a general strategy of applying gold nanoparticles (AuNPs) in colorimetric biosensors to detect Campylobacter in chicken carcass. Polymerase chain reaction (PCR) was utilized for the amplification of the target genes, and the thiolated PCR products were collected. Following the blending of colloid AuNPs with PCR products, the thiol bound to the surface of AuNPs, forming AuNP-PCR products. The PCR products had a sufficient negative charge, which enabled AuNPs to maintain a dispersed formation under electrostatic repulsion. This platform presented a color change as AuNPs aggregate. It did not need additional time and optimization of pH for PCR amplicons to adhere to the AuNPs. The specificity of AuNPs of modified primer pairs for mapA from Campylobacter jejuni and ceuE from Campylobacter coli was activated perfectly (C. jejuni, p-value: 0.0085; C. coli, p-value: 0.0239) when compared to Salmonella Enteritidis and Escherichia coli as non-Campylobacter species. Likewise, C. jejuni was successfully detected from artificially contaminated chicken carcass samples. According to the sensitivity test, at least 15 ng/μL of Campylobacter PCR products or 1×103 CFU/mL of cells in the broth was needed for the detection using the optical method.

네트워크 약리학적 분석에 의한 소세포폐암에 대한 청대의 항암기전 연구 (Identifying the Anti-Cancer Effect of Indigo Naturalis in Small Cell Lung Cancer Based on Network Pharmacological Analysis)

  • 김영훈;정우진;정광희;김윤숙;안원근
    • 동의생리병리학회지
    • /
    • 제36권6호
    • /
    • pp.229-234
    • /
    • 2022
  • Lung cancer is the leading cause of cancer-related deaths worldwide. Indigo Naturalis (IN) is a dark blue powder obtained by processing leaves or stems of indigo plants, its anticancer effects have been reported in several studies. However, the pharmacological mechanism of IN in small cell lung cancer (SCLC) is not elucidated. In this study, to investigate the anticancer efficacy of IN for SCLC, we presented potential active ingredients, SCLC-related targets, and pharmacological mechanisms of IN that are expected to have anticancer activity for SCLC using a network pharmacological analysis. The phytochemical compounds of IN have been collected through TCMSP, SymMap, or HPLC documents. The active ingredients of IN such as indirubin, indican, isatin, and tryptanthrin were selected through ADME parameters or literature investigations for each compound. Using the Compounds, Disease-Target associations Databases, 124 common targets of IN and SCLC were obtained. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis was carried out. GO biological processes are associated with response to xenobiotic stimulus, positive regulation of protein phosphorylation, regulation of mitotic cell cycle, and regulation of apoptotic signaling pathway. KEGG disease pathways included Gastric cancer, Bladder cancer, SCLC, and Melanoma. The main anticancer targets of the IN for SCLC were analyzed in 14 targets, including BCL2, MYC, and TP53. In conclusion, the results of this study based on the network pharmacology of IN can provide important data for the effective prevention and treatment of SCLC.

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • 제46권7호
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture

  • Shuyi Wang;Jingwen Hao;Jicheng Yang;Qianqian Zhang;Aihua Li
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.167-179
    • /
    • 2023
  • The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.