Browse > Article
http://dx.doi.org/10.14374/HFS.2022.30.4.293

Prediction of cerebral infarction suppression mechanism of the Sagunja-Tang through network pharmacology analysis  

Lim, Chiyeon (College of Medicine, Dongguk University)
Lee, Byoungho (Inju Hospital of Korean Medicine)
Cho, Suin (School of Korean Medicine, Pusan National University)
Publication Information
Herbal Formula Science / v.30, no.4, 2022 , pp. 293-304 More about this Journal
Abstract
Objectives : Sagunja-Tang is a famous prescription used in Korean medicine for the purpose of promoting vital energy, and there are few studies using Sagunja-Tang on cerebrovascular diseases yet. As previous studies confirmed that Sagunja-tang is highly likely to be used effectively for stroke, this study was intended to predict the mechanism through which Sagunja-tang would act effectively on stroke. Methods : In this study, a network pharmacology analysis method was used, and oral bioavailability (OB), drug likeness (DL), Caco-2 and BBB permeability were utilized to select compounds with potential activity. For the values of each variable used in this study, OB ≥ 30%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ 0.3 were applied. Using the above variables, the relations between target genes and diseases that are presumed to be involved in the selected bioavailable compounds were constructed in a network format, and proteins thought to play a major role were identified. Results : Among the compounds included in Sagunja-Tang, 26 bioavailable compounds were selected and it was confirmed that these compounds can be effectively used in cerebrovascular diseases such as Alzheimer's disease and stroke. These compounds are considered to act on proteins related in cell death and growth. The most important mechanism of action was predicted to be apoptosis, and the protein that is thought to play the most key action in this mechanism was caspase-3. Conclusions : In our future study, Sagunja-Tang will be used in an ischemic stroke mouse model, and the mechanism of action will be explored focusing on apoptosis and cell proliferation.
Keywords
Donguibogam; ischemic stroke; neuroprotection; apoptosis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Poisson SN, Glidden D, Johnston SC, Fullerton HJ. Deaths from stroke in US young adults, 1989-2009. Neurology. 2014;83(23):2110-5.   DOI
2 Bejot Y, Delpont B, Giroud M. Rising stroke incidence in young adults: More epidemiological evidence, more questions to be answered. J Am Heart Assoc. 2016;5(5):10.1161/JAHA.116.003661.   DOI
3 Hadadha M, Vakili A, Bandegi AR. Effect of the inhibition of hydrogen sulfide synthesis on ischemic injury and oxidative stress biomarkers in a transient model of focal cerebral ischemia in rats. J Stroke Cerebrovasc Dis. 2015;24(12):2676-84.   DOI
4 Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5(6):10.1101/cshperspect.a008672.   DOI
5 Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res. 2008;86(8):1659-69.   DOI
6 Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res. 2001;477(1-2):97-110.   DOI
7 Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem. 2008;105(3):943-55.   DOI
8 Fu R, Shen Y, Zheng J. Association between common genetic variants in ESR1 and stroke risk: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2019;28(11):104355.
9 Wnuk A, Przepiorska K, Pietrzak BA, Kajta M. Post-treatment with amorfrutin B evokes PPARγ-mediated neuroprotection against hypoxia and ischemia. Biomedicines. 2021;9(8):854.doi: 10.3390/biomedicines9080854.    DOI
10 Zhao P, Zhou R, Zhu XY, Hao YJ, Li N, Wang J, Niu Y, Sun T, Li YX, Yu JQ. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int J Mol Med. 2015;36(3):633-44.   DOI
11 Durukan A, Tatlisumak T. Handbook of clinical neurology stroke, part 1 basic and epidemiological aspects: New York: Elsevier; 2009.
12 Kim D. Animal models of stroke. Brain & NeuroRehabilitation. 2011;4(1):1-11.   DOI
13 Lee SE, Lim C, Lee M, Kim CH, Kim H, Lee B, Cho S. Assessing neuroprotective effects of Glycyrrhizae Radix et Rhizoma extract using a transient middle cerebral artery occlusion mouse model. J Vis Exp. 2018;142. doi(142):10.3791/58454.   DOI
14 Lim C, Lim S, Lee B, Kim B, Cho S. Licorice pretreatment protects against brain damage induced by middle cerebral artery occlusion in mice. J Med Food. 2018;21(5):474-80.
15 Lim C, Lim S, Lee B, Cho S. Selection for preclinical study candidate through analysis of frequently used medications presented in Donguibogam Stroke chapter. Herbal Formula Science. 2022;30(3):165-74.   DOI
16 Lee SJ. Research trends on the effect of Sagunzatang and Samultang. Proceed Daejeon Univ Inst Kor Med. 2011;20(1):175-82.
17 Lee KG, Huang DS, Yu YB, Ma JY, Ha HK, Shin HK. A study on compositions, dosages and usages of Sagunjatang, Samultang, Palmultang, Sipjeondaebotang in literature. J Korean Med Classics. 2006;19(4):219-25.
18 Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13.doi: 10.1186/1758-2946-6-13.   DOI
19 KIOM. Defining Dictionary for Medicinal Herbs. Published on the Internet; https://oasis.kiom.re.kr/herblib/hminfo/hbmcod/hbmcodList.do (accessed 2022-11-02).
20 STRING. https://string-db.org/ (accessed 2022-11-06).
21 KEGG. Available from:URL;https://www.genome.jp/kegg/ (accessed 2022-11-06).
22 Yang P, Tian Y, Deng W, Cai X, Liu W, Li L, Huang H. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia-reperfusion in rats. Exp Ther Med. 2019;18(4):2805-12.
23 Liu L, Vollmer MK, Fernandez VM, Dweik Y, Kim H, Dore S. Korean red ginseng pretreatment protects against long-term sensorimotor deficits after ischemic stroke likely through Nrf2. Front Cell Neurosci. 2018;12:74.
24 Ban JY, Kang SW, Lee JS, Chung JH, Ko YG, Choi HS. Korean red ginseng protects against neuronal damage induced by transient focal ischemia in rats. Exp Ther Med. 2012;3(4):693-8.   DOI
25 Zheng GQ, Cheng W, Wang Y, Wang XM, Zhao SZ, Zhou Y, Liu SJ, Wang XT. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol. 2011;133(2):724-8.   DOI
26 Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S. Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway. Life Sci. 2011;88(15-16):725-9.   DOI
27 Jin M, Kim K, Lim C, Cho S, Kim YK. Neuroprotective effects of Korean white ginseng and red ginseng in an ischemic stroke mouse model. J Ginseng Res. 2022;46(2):275-82.   DOI
28 Yu XQ, Xue CC, Zhou ZW, Li CG, Du YM, Liang J, Zhou SF. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci. 2008;82(1-2):68-78.   DOI
29 Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem. 1999;274(30):21155-61.   DOI