• Title/Summary/Keyword: Target echoes

Search Result 33, Processing Time 0.027 seconds

Investigation of Target Echoes in Multi-static SONAR System - Part I : Design for Acoustic Measuring System (다중상태 소나시스템을 적용한 표적반향음 연구 - Part I : 측정시스템 설계)

  • Bae, Ho Seuk;Ji, Yoon Hee;Kim, Wan-Jin;Kim, Woo-Shik;Kim, Jea Soo;Yun, Sung-Ung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.429-439
    • /
    • 2014
  • The target echoes contain information on the target such as the orientation, kinematics, and internal structure, as well as the external geometrical shape of the target. In addition, the pattern of the target echoes depends on the arrangement of the transmitters and receivers in space. Therefore, the study of the target echoes in a multi-static SONAR system can be useful for detecting and tracking submerged objects using an underwater surveillance system. For this purpose, an acoustic measuring system for multi-static target echoes was designed and tested in an acoustic water tank. Some preliminary data are presented and discussed.

Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification (다중상태 소나시스템을 적용한 표적반향음 연구 - Part II : 수치모델링과 실험적 검증)

  • Ji, Yoon Hee;Bae, Ho Seuk;Byun, Gi-Hoon;Kim, Jea Soo;Kim, Woo-Shik;Park, Sang-Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.440-451
    • /
    • 2014
  • A multi-static SONAR system consists of the transmitters and receivers separately in space. The active target echoes are received along the transmitter-target-receiver path and depend on the shape and aspect angle of the submerged objects at each receiver. Thus, the target echo algorithm used with a mono-static system, in which the transmitter and receiver are located at the same position, has limits in simulating the target echoes for a multi-static SONAR system. In this paper, a target echo modeling procedure for a 3D submerged object in space is described based on the Kirchhoff approximation, and the SONAR system is extended to a multi-static SONAR system. The scattered field from external structures is calculated on the visible surfaces, which is determined based on the locations of the transmitter and receiver. A series of experiments in an acoustic water tank was conducted to measure the target echoes from scaled targets with a single transmitter and 16 receivers. Finally, the numerical results were compared with experimental results and shown to be useful for simulating the target echoes/target strength in a multi-static SONAR system.

Unusual Radar Echo from the Wake of Meteor Fireball in Nearly Horizontal Transits in the Summer Polar Lower-Thermosphere

  • Lee, Young-Sook;Kirkwood, Sheila;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2018
  • The summer polar lower thermosphere (90-100 km) has an interesting connection to meteors, adjacent to the mesopause region attaining the lowest temperature in summer. Meteors supply condensation nuclei for charged ice particles causing polar mesospheric summer echoes (PMSE). We report the observation of meteor trail with nearly horizontal transit at high speed (20-50 km/s), and at last with re-enhanced echo power followed by diffusive echoes. Changes in phase difference between radar receivers aligned in meridional and zonal directions are used to determine variations in horizontal displacements and speeds with respect to time by taking advantage of radar interferometric analysis. The actual transit of echo target is observed along the straight pathway vertically and horizontally extended as much as a distance of at least 24 km and at most 29 km. The meteor trail initially has a signature similar to 'head echoes', with travel speeds from 20 - 50 km/s. It subsequently transforms into a different type of echo target including specular echo and then finally the power reenhanced. The reenhancement of echo power is followed by fume-like diffusive echoes, indicating sudden release of plasma as like explosive process probably involved. We discuss a possible role of meteor-triggered secondary plasma trail, such as fireball embedded with electrical discharge that continuously varies the power and transit speed.

Signal Synthesis and Feature Extraction for Active Sonar Target Classification (능동소나 표적 인식을 위한 신호합성 및 특징추출)

  • Uh, Y.;Seok, J.W.
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • Various approaches to process active sonar signals are under study, but there are many problems to be considered. The sonar signals are distorted by the underwater environment, and the spatio-temporal and spectral characteristics of active sonar signals change in accordance with the aspect of the target even though they come from the same one. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using probabilistic neural network classifier.

Active Sonar Target Recognition Using Fractional Fourier Transform (Fractional Fourier 변환을 이용한 능동소나 표적 인식)

  • Seok, Jongwon;Kim, Taehwan;Bae, Geon-Seong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2505-2511
    • /
    • 2013
  • Many studies in detection and classification of the targets in the underwater environments have been conducted for military purposes, as well as for non-military purpose. Due to the complicated characteristics of underwater acoustic signal reflecting multipath environments and spatio-temporal varying characteristics, active sonar target classification technique has been considered as a difficult technique. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using neural network classifier.

Efficient Doppler Spectrum Estimation in Radar Systems (레이다 시스템에서의 효율적인 도플러 스펙트럼 추정)

  • Lee, Jonggil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.605-608
    • /
    • 2009
  • It is necessary to estimate the Doppler spectrum for each range cell for the extraction of useful information from the return echoes in radar systems used for the remote sending purpose. However, The conventional spectrum estimation method, FFT(Fast Fourier Transform), called the Doppler filter bank, causes the frequency resolution problem if the dwell time is relatively short. This short acquisition time also spreads the side lobe levels of return echoes further, resulting in difficulties for the discrimination of weak target signals included in relatively strong target echoes. Therefore, in this paper, the efficient Doppler spectrum estimation methods are compared and investigated through the parameter spectrum estimation in the time domain to overcome these problems.

  • PDF

Acoustic Scattering Characteristics of the Sea Bottom ( 1 ) (해저의 초음파 산란 특성에 관한 연구 ( I ))

  • Lee, Dae-Jae;Sin, Hyeong-Il;Park, Jung-Hui
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 1990
  • The authors carried out an experiment to investigate the echo fluctuations from ocean bottom due to ship's motion. The bottom echoes was continuously measured, by using a 50 kHz Echo sounder on board of the ship being at anchor under the sea condition of 15 knots in wind velocity and approximately 2 meters in wave height, to extract the information about the pulse stretching and the ship's motion from the first return and the second return. A data acquisition system was used to record digitally the envelope of the echoes, and the analysis was applied to the echo data collected from the continental shelf in the South China Sea. The results obtained can be summarized as follows: 1. The equivalent pulse width of the second return echoes from ocean bottom was 2.4 times longer than that of the first return echoes. 2. The echo peak values of the first return fluctuated markedly than that of the second return and was shown to be extremely sensitive to small change in ship's motion. 3. Energy target strength and peak target strength of the sandy-mud bottom were -13.4 dB and -14.6 dB, respectively.

  • PDF

Fast, Upward, Long-Lasting, Transit Echoes as an Evidence of New-Type of Meteor-Trail Leader Discharge in the Summer Polar Upper Mesosphere

  • Lee, Young-Sook;Kirkwood, Sheila;Kwak, Young-Sil
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.93-103
    • /
    • 2018
  • Non-specular, vertically upward transit, fast-moving radar echoes are observed in the summer polar upper mesosphere near 90 km using 52 MHz VHF radar at Esrange, Sweden. By resolving maximum echo power movement, the unusual meteor trails propagate vertically upward with taking horizontal displacements at an initial speed of 10 km/s exponentially decreasing with increasing height from 85-89 km, lasting for 3.5 sec. Another upward transit is observed as following a downward transit echo target in about ~1 sec, lasting over 5 sec. The upward motion cannot be explained with the dynamics of penetrating meteors or by atmospheric dynamics. The observation proposes that secondary produced plasma jets occurring from meteor trail are possibly responsible for upward fast moving echoes. The long-lasting (3-5 sec), ascending meteor trails at speeds of a few $10^4m/s$ are distinctive from any previous occurrences of meteors or upper atmospheric electrical discharges in the aspect of long-lasting upward/downward motions. This result possibly suggests a new type of meteor-trail leader discharge occurring in the summer polar upper mesosphere and lower thermosphere.

Changes in the Orientation and Frequency Dependence of Target Strength due to Morphological Differences in the Fish Swim Bladder (어류 부레의 형태학적 차이에 따른 음향산란강도의 자세 및 주파수 의존성의 변화)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.233-243
    • /
    • 2015
  • Controlled broadband acoustic scattering laboratory experiments were conducted using a linear chirp signal (95-220 kHz), and x-ray images of live and model fish with an artificial swim bladder were analyzed to investigate the changes in orientation and frequency dependence of target strength (TS) due to morphological differences in fish swim bladders. The broadband echoes from live and model fish were measured over an orientation angle range of ${\pm}45^{\circ}$ in the dorsal plane and in approximately $1^{\circ}$ increments. The location of nulls in the simulated echo response of the SINC [sinc function] model was overlaid on the TS map, showing the orientation and frequency dependence of fish TS, and they matched very well. It was possible to infer the equivalent fish scattering size (or swim bladder) using the null spacing in the experimentally obtained broadband TS map. Good agreement was observed for inferring the equivalent scattering size between the SINC model and the broadband echoes measured for the three fish species (black scraper Thamnaconus modestus; goldeye rockfish Sebastes thompsoni; and whitesaddled reef fish Chromis notatus). Some results of this inference are discussed.

UWB Automobile Short Range Radar Receivers Performance In a Log-Normal Clutter Background (Log-Normal Clutter 환경에서 차량용 UWB 단거리 레이더 수신기의 성능분석)

  • Kumaravelu, Nandeeshkumar;Ko, Seok-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.59-64
    • /
    • 2011
  • Ultra wideband radars attract considerable attention as a short range automotive radar because of its high range resolution. Radar signal reflected from a target often contains unwanted echoes called as clutter, so the detection of target is difficult due to clutter echoes. Therefore, it is important to investigate the radar detector for better detecting from the reflected signals. In this paper, the optimal detector is obtained for various mean and variance value in log-normal clutter environment. The types of non-coherent detectors used are square law detector, linear detector, and logarithmic detector. The performances of detectors are compared in log normal clutter environment and the suitable detector is determined for automotive short range radar application.