Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.2.93

Fast, Upward, Long-Lasting, Transit Echoes as an Evidence of New-Type of Meteor-Trail Leader Discharge in the Summer Polar Upper Mesosphere  

Lee, Young-Sook (Department of Astronomy and Space Science and Geology, Chungnam National University)
Kirkwood, Sheila (Swedish Institute of Space Physics)
Kwak, Young-Sil (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.2, 2018 , pp. 93-103 More about this Journal
Abstract
Non-specular, vertically upward transit, fast-moving radar echoes are observed in the summer polar upper mesosphere near 90 km using 52 MHz VHF radar at Esrange, Sweden. By resolving maximum echo power movement, the unusual meteor trails propagate vertically upward with taking horizontal displacements at an initial speed of 10 km/s exponentially decreasing with increasing height from 85-89 km, lasting for 3.5 sec. Another upward transit is observed as following a downward transit echo target in about ~1 sec, lasting over 5 sec. The upward motion cannot be explained with the dynamics of penetrating meteors or by atmospheric dynamics. The observation proposes that secondary produced plasma jets occurring from meteor trail are possibly responsible for upward fast moving echoes. The long-lasting (3-5 sec), ascending meteor trails at speeds of a few $10^4m/s$ are distinctive from any previous occurrences of meteors or upper atmospheric electrical discharges in the aspect of long-lasting upward/downward motions. This result possibly suggests a new type of meteor-trail leader discharge occurring in the summer polar upper mesosphere and lower thermosphere.
Keywords
meteor trail; non-specular echo; upward trail; leader discharge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ, Non-Equilibrium Air Plasmas at Atmospheric Pressures (CRC Press, Boca Raton, 2004).
2 Ceplecha Z, Borovicka J, Elford WG, ReVelle DO, Hawkes RL, et al., Meteor phenomena and bodies, Space Sci. Rev. 84, 327-341 (1998). https://doi.org/10.1023/A:1005069928850   DOI
3 Chau JL, Woodman RF, Observations of meteor head-echoes using the Jicamarca 50 MHz radar in interferometer mode, Atmos. Chem. Phys. 4, 511-521 (2004). https://doi.org/10.5194/acp-4-511-2004   DOI
4 Chau JL, Strelnikova I, Schult C, Oppenheim MM, Kelley MC, et al., Nonspecular meteor trails from non-field-aligned irregularities: can they be explained by presence of charged meteor dust?, Geophys. Res. Lett. 41, 3336-3343 (2014). https://doi.org/10.1002/2014GL059922   DOI
5 Cho JYN, Rottger J, An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res. 102, 2001-2020 (1997). https://doi.org/10.1029/96JD02030   DOI
6 Dyrud LP, Oppenheim MM, Close S, Hunt S, Interpretation of non-specular radar meteor trails, Geophys. Res. Lett. 29, 8-1-8-4 (2002). https://doi.org/10.1029/2002GL015953   DOI
7 Holdsworth DA, Reid IM, A simple model of atmospheric radar backscatter: description and application to the full correlation analysis of spaced antenna data, Radio Sci. 30, 1263-1280 (1995). https://doi.org/10.1029/95RS00645   DOI
8 Holdsworth DA, Reid IM, Comparisons of full correlation analysis (FCA) and imaging Doppler interferometry (IDI) winds using the Buckland Park MF radar, Ann. Geophys. 22, 3829-3842 (2004). https://doi.org/10.5194/angeo-22-3829-2004   DOI
9 Holzworth RH, Goldberg RA, Electric field measurements in noctilucent clouds, J. Geophys. Res. 109, D16203 (2004). https://doi.org/10.1029/2003JD004468   DOI
10 Hunt SM, Oppenheim M, Close S, Brown PG, McKeen F, et al., Determination of the meteoroid velocity distribution at the earth using high-gain radar, Icarus 168, 34-42 (2004). https://doi.org/10.1016/j.icarus.2003.08.006   DOI
11 Jee G, Kim JH, Lee C, Kim YH, Ground-based observations for the upper atmosphere at King Sejong Station, Antarctica, J. Astron. Space Sci. 31, 169-176 (2014). https://doi.org/10.5140/JASS.2014.31.2.169   DOI
12 Kim JH, Chung JK, Kim YH, Won YI, Chun MY, et al., All-Sky observation of the 2001 Leonid meteor storm: 1. meteor magnitude distribution, J. Astron. Space Sci. 20, 283-298 (2003). https://doi.org/10.5140/JASS.2003.20.4.283   DOI
13 Kirkwood S, Wolf I, Nilsson H, Dalin P, Mikhaylova D, et al., Polar mesosphere summer echoes at Wasa, Antarctica ($73^{\circ}S$): first observations and comparison with $68^{\circ}N$, Geophys. Res. Lett. 34, L15803 (2007). https://doi.org/10.1029/2007GL030516   DOI
14 Lahtinen P, Makela A, Pekkola M, Harri AM, TLE observing in Finland, in 1st TEA-IS summer school, Malaga, Spain, 17-22 Jun 2012.
15 Park FR, McIntosh BA, A bright fireball observed photographically by radar and visually, J. R. Astron. Soc. Can. 61, 25-39 (1967).
16 Lee YS, Shepherd GG, Summer high-latitude mesospheric observations of supersonic bursts and O($^1S$) emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning, J. Geophys. Res. 115, A00E26 (2010). https://doi.org/10.1029/2009JA014731   DOI
17 Lee YS, Kirkwood S, Kwak YS, Kim KC, Shepherd GG, Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere, J. Geophys. Res. 119, 3883-3894 (2014). https://doi.org/10.1002/2014JA019790   DOI
18 McKinley DWR, Meteor Science and Engineering (McGraw-Hill, New York, 1961).
19 Muller RA, Red sprites triggered by meteors?, Eos Trans. AGU, 76(46), Fall Meet. Suppl., F105 (1995).
20 Oppenheim MM, Dyrud LP, Ray L, Plasma instabilities in meteor trails: linear theory, J. Geophys. Res. 108, 1063 (2003). https://doi.org/10.1029/2002JA009548   DOI
21 Pasko VP, Inan US, Bell TF, Spatial structure of sprites, Geophys. Res. Lett. 25, 2123-2126 (1998). https://doi.org/10.1029/98GL01242   DOI
22 Roussel-Dupre R, Gurevich AV, On runaway breakdown and upward propagating discharges. J. Geophys. Res. 101, 2297-2311 (1996). https://doi.org/10.1029/95JA03278   DOI
23 Sato T, Nakamura T, Nishimura K, Orbit determination of meteors using the MU radar, IEICE Trans. Commun. E83-B, 1990-1995 (2000).
24 Shimogawa M, Holzworth RH, Electric field measurements in a NLC/PMSE region during the MASS/ECOMA campaign, Ann. Geophys. 27, 1423-1430 (2009). https://doi.org/10.5194/angeo-27-1423-2009   DOI
25 Wescott EM, Sentman DD, Heavner MJ, Hampton DL, Vaughan Jr. OH, Blue Jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production, J. Atmos. Sol.-Terr. Phys. 60, 713-724 (1998). https://doi.org/10.1016/S1364-6826(98)00018-2   DOI
26 Sparks JJ, Janches D, Nicolls MJ, Heinselman C, Determination of physical and radiant meteor properties using PFISR interferometry measurements of head echoes, J. Atmos. Sol.-Terr. Phys. 72, 1221-1230 (2010). https://doi.org/10.1016/j.jastp.2010.08.004   DOI
27 Spurny P, Ceplecha Z, Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon?, Astron. Astrophys. 489, 449-454 (2008). https://doi.org/10.1051/0004-6361:200810069   DOI
28 Suszcynsky DM, Strabley R, Roussel-Dupre R, Symbalisty EMD, Armstrong RA, et al., Video and photometric observations of a sprite in coincidence with a meteor-triggered jet event, J. Geophys. Res. 104, 31361-31367 (1999). https://doi.org/10.1029/1999JD900962   DOI
29 Symbalisty EMD, Roussel-Dupre R, ReVelle DO, Suszcynsky DM, Yukhimuk VA, et al., Meteor trails and columniform sprites, Icarus 148, 65-79 (2000). https://doi.org/10.1006/icar.2000.6517   DOI
30 Uman MA, The Lightning Discharge (Dover Publications, Mineola, 2001).
31 Yair Y, Israelevich P, Devir AD, Moalem M, Price C, et al., New observations of sprites from the space shuttle, J. Geophys. Res. 109, D15201 (2004). https://doi.org/10.1029/2003JD004497   DOI
32 Younger PT, Astin I, Sandford DJ, Mitchell NJ, The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes, Ann. Geophys. 27, 2831-2841 (2009). https://doi.org/10.5194/angeo-27-2831-2009   DOI
33 Zabotin NA, Wright JW, Role of meteoric dust in sprite formation, Geophys. Res. Lett. 28, 2593-2596 (2001). https://doi.org/10.1029/2000GL012699   DOI