Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.2.83

Unusual Radar Echo from the Wake of Meteor Fireball in Nearly Horizontal Transits in the Summer Polar Lower-Thermosphere  

Lee, Young-Sook (Department of Astronomy and Space Science and Geology, Chungnam National University)
Kirkwood, Sheila (Swedish Institute of Space Physics)
Kwak, Young-Sil (Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.2, 2018 , pp. 83-92 More about this Journal
Abstract
The summer polar lower thermosphere (90-100 km) has an interesting connection to meteors, adjacent to the mesopause region attaining the lowest temperature in summer. Meteors supply condensation nuclei for charged ice particles causing polar mesospheric summer echoes (PMSE). We report the observation of meteor trail with nearly horizontal transit at high speed (20-50 km/s), and at last with re-enhanced echo power followed by diffusive echoes. Changes in phase difference between radar receivers aligned in meridional and zonal directions are used to determine variations in horizontal displacements and speeds with respect to time by taking advantage of radar interferometric analysis. The actual transit of echo target is observed along the straight pathway vertically and horizontally extended as much as a distance of at least 24 km and at most 29 km. The meteor trail initially has a signature similar to 'head echoes', with travel speeds from 20 - 50 km/s. It subsequently transforms into a different type of echo target including specular echo and then finally the power reenhanced. The reenhancement of echo power is followed by fume-like diffusive echoes, indicating sudden release of plasma as like explosive process probably involved. We discuss a possible role of meteor-triggered secondary plasma trail, such as fireball embedded with electrical discharge that continuously varies the power and transit speed.
Keywords
radar interferometric analysis; meteor-triggered plasma trail; radar echoes; fireball;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Holzworth RH, Goldberg RA, Electric field measurements in noctilucent clouds, J. Geophys. Res. 109, D16203 (2004). https://doi.org/10.1029/2003JD004468   DOI
2 Janches D, Hormaechea JL, Brunini C, Hocking W, Fritts DC, An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER), Icarus 223, 677-683 (2013). https://doi.org/10.1016/j.icarus.2012.12.018   DOI
3 Janches D, Hocking W, Pifko S, Hormaechea JL, Fritts DC, et al., Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar, J. Geophys. Res. 119, 2269-2287 (2014). https://doi.org/10.1002/2013JA019241   DOI
4 Jee G, Kim JH, Lee C, Kim YH, Ground-based observations for the upper atmosphere at King Sejong Station, Antarctica, J. Astron. Space Sci. 31, 169-176 (2014). https://doi.org/10.5140/JASS.2014.31.2.169   DOI
5 Johnson RM, Killeen TL, The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (American Geophysical Union, Washington D.C., 1995).
6 Kero J, Szasz C, Nakamura T, MU head echo observations of the 2010 Geminids: radiant, orbit, and meteor flux observing biases, Ann. Geophys. 31, 439-449 (2013). https://doi.org/10.5194/angeo-31-439-2013   DOI
7 Kirkwood S, Wolf I, Nilsson H, Dalin P, Mikhaylova D, et al., Polar mesosphere summer schoes at Wasa, Antarctica ($73^{\circ}S$): first observations and comparison with $68^{\circ}N$, Geophys. Res. Lett. 34, L15803 (2007). https://doi.org/10.1029/2007GL030516   DOI
8 Kwak YS, Yang TY, Kil H, Phanikumar DV, Heo BH, et al., Characteristics of the E - and F -region field-aligned irregularities in middle latitudes: Initial results obtained from the Daejeon 40.8 MHz VHF radar in South Korea, J. Astron. Space Sci. 31, 15-23 (2014). https://doi.org/10.5140/JASS.2014.31.1.15   DOI
9 Lee YS, Shepherd GG, Summer high-latitude mesospheric observations of supersonic bursts and $O(^1S)$ emission rate with the UARS WINDII instrument and the association with sprites, meteors, and lightning, J. Geophys. Res. 115, A00E26 (2010). https://doi.org/10.1029/2009JA014731   DOI
10 Lee YS, Kirkwood S, Kwak YS, Kim KC, Shepherd GG, Polar summer mesospheric extreme horizontal drift speeds during interplanetary corotating interaction regions (CIRs) and high-speed solar wind streams: coupling between the solar wind and the mesosphere, J. Geophys. Res. 119, 3883-3894 (2014). https://doi.org/10.1002/2014JA019790   DOI
11 Reddi CR, Sama TVC, Rao PB, Spatial domain interferometric VHF radar observations of spread meteor echoes, J. Atmos. Sol.-Terr. Phys. 64, 339-347 (2002). https://doi.org/10.1016/S1364-6826(01)00107-9   DOI
12 Malhotra A, Mathews JD, Low-altitude meteor trail echoes, Geophys. Res. Lett. 36, L21106 (2009). https://doi.org/10.1029/2009GL040558   DOI
13 Malhotra A, Mathews JD, Urbina J, A radio science perspective on long-duration meteor trails, J. Geophys. Res. 112, A12303 (2007). https://doi.org/10.1029/2007JA012576   DOI
14 Oppenheim MM, Dyrud LP, Ray L, Plasma instabilities in meteor trails: linear theory, J. Geophys. Res. 108, 1063 (2003). https://doi.org/10.1029/2002JA009548   DOI
15 Oppenheim MM, Sugar G, Slowey NO, Bass E, Chau JL, et al., Remote sensing lower thermosphere wind profiles using non-specular meteor echoes, Geophys. Res. Lett. 36, L09817 (2009). https://doi.org/10.1029/2009GL037353   DOI
16 Park FR, McIntosh BA, A bright fireball observed photographically, by radar and visually, J. R. Astron. Soc. Can. 61, 25-39 (1967).
17 Sandford DJ, Beldon CL, Hibbins RE, Mitchell NJ, Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere - Part 1: mean winds, Atmos. Chem. Phys. 10, 10273-10289 (2010). https://doi.org/10.5194/acp-10-10273-2010   DOI
18 Shimogawa M, Holzworth RH, Electric field measurements in a NLC/PMSE region during the MASS/ECOMA campaign, Ann. Geophys. 27, 1423-1430 (2009). https://doi.org/10.5194/angeo-27-1423-2009   DOI
19 Skolnik MI, Introduction to radar systems (McGraw-Hill, New York, 1962).
20 Sparks JJ, Janches D, Nicolls MJ, Heinselman C, Determination of physical and radiant meteor properties using PFISR interferometry measurements of head echoes J. Atmos. Sol.-Terr. Phys. 72, 1221-1230 (2010). https://doi.org/10.1016/j.jastp.2010.08.004   DOI
21 Spurny P, Ceplecha Z, Is electric charge separation the main process for kinetic energy transformation into the meteor phenomenon?, Astron. Astrophys. 489, 449-454 (2008). https://doi.org/10.1051/0004-6361:200810069   DOI
22 Sugar G, Oppenheim MM, Bass E, Chau JL, Nonspecular meteor trail altitude distributions and durations observed by a 50 Mhz high-power radar, J. Geophys. Res. 115, A12334 (2010). https://doi.org/10.1029/2010JA015705   DOI
23 Zhou QH, Mathews JD, Nakamura T, Implications of meteor observations bu the MU radar, Geophys. Res. Lett. 28, 1399-1402 (2001). https://doi.org/10.1029/2000GL012504   DOI
24 Yang TY, Kwak YS, Kil H, Lee YS, Lee WK, et al., Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea, J. Geophys. Res. 120, 10107-10115 (2015). https://doi.org/10.1002/2015JA021885   DOI
25 Younger PT, Astin I, Sandford DJ, Mitchell NJ, The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes, Ann. Geophys. 27, 2831-2841 (2009). https://doi.org/10.5194/angeo-27-2831-2009   DOI
26 Zadorozhny AM, Tyutin AA, Witt G, Wilhelm N, Walchli U, et al., Electric field measurements in the vicinity of noctilucent clouds and PMSE, Geophy. Res. Lett. 20, 2299-2302 (1993). https://doi.org/10.1029/93GL02626   DOI
27 Chapin E, Kudeki E, Plasma wave excitation on meteor trails in the equatorical eletrojet, Geophys. Res. Lett. 21, 2433-2436 (1994). https://doi.org/10.1029/94GL01705   DOI
28 Abe S, Meteoroids and meteors - observations and connection to parent bodies, vol. 758, Lecture Notes in Physics, eds. Mann I, Nakamura A, Mukai T (Springer, Berlin, 2009), 129-166.
29 Briggs BH, Phillips GJ, Shinn DH, The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. 63, 106-121 (1950). https://doi.org/10.1088/0370-1301/63/2/305   DOI
30 Ceplecha Z, Borovicka J, Elford WG, ReVelle DO, Hawkes RL, et al., Meteor phenomena and bodies, Space Sci. Rev. 84, 327-471 (1998). https://doi.org/10.1023/A:10050699   DOI
31 Chau JL, Strelnikova I, Schult C, Oppenheim MM, Kelley MC, et al., Nonspecular meteor trails from non-field-aligned irregularities: can they be explained by presence of charged meteor dust?, Geophys. Res. Lett. 41, 3336-3343 (2014). https://doi.org/10.1002/2014GL059922   DOI
32 Cho JYN, Rottger J, An updated review of polar mesosphere summer echoes: observation, theory, and their relation-ship to noctilucent clouds and subvisible aerosols, J. Geophys. Res. 102, 2001-2020 (1997). https://doi.org/10.1029/96JD02030   DOI
33 Close S, Oppenheim M, Hunt S, Dyrud L, Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies, J. Geophys. Res. 107, A10 (2002). https://doi.org/10.1029/2002JA009253   DOI
34 Dimant YS, Oppenheim MM, Milikh GM, Meteor plasma trails: effects of external electric field, Ann. Geophys. 27, 279-296 (2009). https://doi.org/10.5194/angeo-27-279-2009   DOI
35 Dyrud LP, Oppenheim MM, Close S, Hunt S, Interpretation of non-specular radar meteor trails, Geophys. Res. Lett. 29, 8-1-8-4 (2002). https://doi.org/10.1029/2002GL015953   DOI
36 Hocking HK, Real-time meteor entrance speed determinations made with interferometric meteor radars, Radio Sci. 35, 1205-1220 (2000). https://doi.org/10.1029/1999RS002283   DOI