• Title/Summary/Keyword: Target angle

Search Result 771, Processing Time 0.025 seconds

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

A Study on Look Error Estimation and Adaptive Array Angle Estimation (지향 오차 추정과 적응 배열 입사방향 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.155-162
    • /
    • 2011
  • It is using to incident angle estimation technique in order to target estimation in radar. This paper was estimated incident angle estimation for target using adaptive array incident angle and single look error incident angle estimation technique. We estimated signal incident angle of target to removal main lobe and side lobe to adaptive array incident angle technique. It is difficult to correctly target estimation because single look technique increase direction error of signal incident angle. In order to receive a desired target signal must be not almost look error between signal incident angle and look angle. we had decreased to occur a look error using delay time and single look condition to calculation a covariance when incident angle estimate. Through simulation, we show that the proposed incident angle estimation technique improves the performance of target estimation compared to previous method.

Impact Angle Control for Non-maneuvering Target with Look Angle Measurements and Line of Sight (지향각, 시선각 정보를 이용한 이동표적의 충돌각 제어)

  • Park, Jang-Seong;Lee, Dong-Hee;Park, Sang-Hyuk;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.508-516
    • /
    • 2019
  • In this paper, we propose a guidance law to control Impact Angle in consideration of look angle limit of the missile with strapdown seeker on the non-maneuvering target. The proposed law is based on sliding mode algorithm and generates acceleration commands using look angle and line of sight information provided by the strapdown seeker and navigation system. And, target velocity and target path angle are provided by like TADS (Target Acquisition and Designation System) at launch time. We can confirm that the target interception and impact angle control are possible through the convergence of the proposed sliding surface. In addition, it is possible to confirm that the sign of derivative result of the look angle at the maximum and minimum look angle is opposite to the sign of the look angle, so the look angle limit is not exceeded.

Definition of Impact Angle and Impact Angle Control Law Against Maneuvering Target (기동표적에 대한 입사각 정의와 입사각 제어 유도법칙)

  • Kim, Hyun-Seung;Park, Sang-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, a guidance law for intercepting maneuvering target with a desired impact angle is proposed. The proposed guidance law is modified from the optimal impact angle control law for a fixed target and given by a biased PN law with the impact angle control term in addition to the conventional PN law. Three different kinds of desired impact angles in the respect of LOS angle, flight path angle, and relative flight path angle to the target are defined. The performance of the proposed guidance law is investigated via numerical simulations for various air-to-air engagement scenarios.

A modified multiple target angle tracking algorithm with predicted angle (방위각 예측치를 이용한 수정된 다중표적 방위각 추적 알고리듬)

  • 류창수;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we modify a multiple target angle tracking algorithm presented by Sword et al.. The predicted estimates, instead of the existing estimates, of the target angles are updated by the most recent output of the sensor array to improve the tracking performance of the algorithm for crossing targets. Also, the least square solution is modified to avoid abnormally large angle innovations when the target angles are very close. The improved performance of the proposed algorithm is demonstrated by computer simulations.

  • PDF

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

Two Unresolved Target Angle Estimation in Phase Comparison Monopulse Radar (위상비교모노펄스를 이용한 근접한 두 표적 분리에 관한 연구)

  • Lee, Seung-Phil;Cho, Byung-Lae;Kim, Young-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.539-544
    • /
    • 2016
  • This paper improves Sherman's two-pulse method for angle estimation of two unresolved targets in phase comparison monopulse radar. The proposed method provides the angle information with only a single-pulse measurement instead of two pulses. The proposed method can estimate a single-target angle by single-target indicator, in contrast with previous techniques. The accuracy of angle estimation for proposed method is demonstrated by simulations.

Bulk and Surface of Al2O3 doped ZnO Films at Different Target Angles by DC magnetron sputtering

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.345.2-345.2
    • /
    • 2016
  • Alumina (Al2O3) doped zinc oxide (ZnO) films (AZO) have been prepared from 2 wt.% Al2O3 doped ZnO target by DC magnetron sputtering at a 2 mTorr (0.27 Pa) chamber pressure in (15 sccm) argon ambient. We obtained films of various opto-electronic properties by variation of target angle from 32.5o to 72.5o. At lower target angle deposited films show higher values in optical gap, mobility of charge carrier, carrier concentration, crystallite grain size, transmission range of wavelength, which are favorable characteristics of AZO as a transparent conducting oxide (TCO). At higher target angle the sheet resistance, work function, surface roughness for the AZO films increases. Measured haze ratio of the films changed lower to higher and size of characteristic surface structure of as deposited film ranges from ~40 nm to ~300 nm. By a combination of low and high target angle we obtained a textured TCO film with high conductivity.

  • PDF

Angle Estimation Error Reduction Method Using Weighted IMM (Weighted IMM 기법을 사용한 각도 추정 오차 감소 기법)

  • Choi, Seonghee;Song, Taeklyul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • This paper proposes a new approach to reduce the target estimation error of the measurement angle, especially applied to the medium and long range surveillance radar. If the target has no maneuver and no change in heading direction for a certain time interval, the predicted angle of interacting multiple model(IMM) from the previous track information can be used to reduce the angle estimation error. The proposed method is simulated in 2 scenarios, a scenario with a non-maneuvering target and a scenario with a maneuvering target. The result shows that the new fusion solution(weighted IMM) with the predicted azimuth and the measured azimuth is worked properly in the two scenarios.

Target Acquisition and Tracking of Tracking Radar (추적레이다의 표적 탐지 및 추적 기술 동향)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this paper, we described the model of noise, target for tracking radar and range tracking, angle tracking, and Doppler frequency tracking for target acquisition and tracking. Target signal as well as the noise signal is modeled as random process varying with elapsed time. This paper addresses three areas of radar target tracking: range tracking, angle tracking, and Doppler frequency tracking. In general, range tracking is prerequisite to and inherent in both angle and Doppler frequency tracking systems. First, we introduced the several range tracking and described techniques for achieving range tracking. Second, we described the radar angle tracking techniques including conical scan, sequential lobing, and monopulse. Finally, we presented concepts and techniques for Doppler frequency tracking for several radar types.

  • PDF