• 제목/요약/키워드: Target Recognition

검색결과 728건 처리시간 0.049초

비행체 표적식별을 위한 트리 구조의 퍼지 뉴럴 네트워크 설계 (Design of a Tree-Structured Fuzzy Neural Networks for Aircraft Target Recognition)

  • 한창욱
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1034-1038
    • /
    • 2020
  • 레이더를 통한 표적식별을 효과적으로 처리하기 위해서는 표적에 대한 정확한 신호 정보가 필요하다. 그러나 이러한 표적 신호에는 잡음이 섞여 있는 경우가 일반적이며, 이 부분에 대한 연구가 지속적으로 이루어지고 있다. 특히 표적에 대한 이미지 처리, 표적신호처리, 표적식별 등이 그 예라 할 수 있겠다. 군사적 측면으로 볼 때 표적식별 분야가 중요하므로 본 논문에서는 트리 구조의 퍼지 뉴럴 네트워크를 이용하여 비행체 표적식별에 대한 연구를 수행하였다. 비행체에 대한 반사파 데이터를 활용하여 퍼지 뉴럴 네트워크를 학습시켜 모델에 대한 최적화를 수행하였고, 최적화된 모델에 표적에 대한 테스팅 데이터를 입력하여 표적식별에 대한 실험을 수행하여 그 결과를 통해 제안된 방법의 효용성을 검증하였다.

Three-Dimensional Automatic Target Recognition System Based on Optical Integral Imaging Reconstruction

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • 제14권1호
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we present a three-dimensional (3-D) automatic target recognition system based on optical integral imaging reconstruction. In integral imaging, elemental images of the reference and target 3-D objects are obtained through a lenslet array or a camera array. Then, reconstructed 3-D images at various reconstruction depths can be optically generated on the output plane by back-projecting these elemental images onto a display panel. 3-D automatic target recognition can be implemented using computational integral imaging reconstruction and digital nonlinear correlation filters. However, these methods require non-trivial computation time for reconstruction and recognition. Instead, we implement 3-D automatic target recognition using optical cross-correlation between the reconstructed 3-D reference and target images at the same reconstruction depth. Our method depends on an all-optical structure to realize a real-time 3-D automatic target recognition system. In addition, we use a nonlinear correlation filter to improve recognition performance. To prove our proposed method, we carry out the optical experiments and report recognition results.

Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식 (Radar target recognition using Gaussian mixture model over wide-angular region)

  • 서동규;김경태;김효태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별 (SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction)

  • 박지훈;최여름;채대영;임호
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구 (A Study on Automatic Target Recognition Using SAR Imagery)

  • 박종일;김경태
    • 한국전자파학회논문지
    • /
    • 제22권11호
    • /
    • pp.1063-1069
    • /
    • 2011
  • 레이더 영상이나 광학 영상, 적외선 영상 등을 이용하여 표적을 식별하는 기술을 NCTR(Non-Cooperative Target Recognition) 또는 ATR(Automatic Target Recognition)이라 한다. 그 중에서 SAR(Synthetic Aperture Radar) 영상을 이용하여 자동으로 지상 표적을 식별하는 것을 SAR ATR이라고 한다. 일반적으로 SAR ATR은 탐지, 변별 및 식별 단계로 구성된다. 본 논문에서는 ISAR(Inverse Synthetic Aperture Radar) 영상 식별을 위해 개발된 극사상식별기(polar mapping classifier)를 수정하여 SAR 표적 식별에 이용하였으며, 전처리 과정을 통해 클러터 화소의 영향을 줄이고 표적의 그림자 화소들 표적 식별에 이용하여 식별 성능을 향상시켰다.

Intelligent Activity Recognition based on Improved Convolutional Neural Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.807-818
    • /
    • 2022
  • In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.

SAR 영상을 이용한 템플릿 매칭 기반 자동식별 알고리즘 구현 및 성능시험 (Template Matching-Based Target Recognition Algorithm Development and Verification using SAR Images)

  • 임호;채대영;유지희;권경일
    • 한국군사과학기술학회지
    • /
    • 제17권3호
    • /
    • pp.364-377
    • /
    • 2014
  • In this paper, we have developed a target recognition algorithm based on a template matching technique using Synthetic Aperture Radar (SAR) images. For efficient computations, Radon transform-based azimuth estimation algorithm was used with the template matching. MSTAR data set was divided into two groups according to the depression angles, which were a train set and a test set. Template data were generated by rotating and cropping chips which were from MSTAR train set using the azimuth estimation algorithm. Then the template matching process between test data and template data was performed under various conditions. Performance variation according to contrast enhancement preprocessing which is scarce in open literature was also presented. The analysis results show that the target recognition algorithm could be useful for the automatic target recognition using SAR images.

Subclass 개념을 이용한 넓은 관측각에서의 레이더 표적인식 성능향상에 관한 연구 (Wide-Angle Radar Target Classification with Subclass Concept)

  • 서동규;김경태;김효태
    • 한국전자파학회논문지
    • /
    • 제13권8호
    • /
    • pp.777-782
    • /
    • 2002
  • 일반적인 시간 영역에서의 레이더 신호들은 표적의 관측각에 민감하게 변화한다. 따라서 대표적인 시간영역 레이더 신호인 1차원 range profile을 이용하여 구분실험을 하는 경우에 있어서 central moments와 PCA를 결합하여 먼저 특성벡터를 추출한 후 clustering 기법에 기반한 subclass concept을 사용하는 구분기를 사용하여 넓은 관측각에서의 표적인식 성능을 향상시킨 결과들을 보여준다.

목표물 탐지를 고려한 통합 이미지 압축에 관한 연구 (A Strategy for Integrated Target Recognition and High Quality Compression)

  • 남진우
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.257-260
    • /
    • 2000
  • In modern battlefield situation, radar and infrared sensors may be located on aircraft having limited computational resources available for real-time computer processing. Hence sensor images are transmitted typically to central stations for processing and automatic target recognition/detection. Owing to the limited bandwidth channels that are typically available between the aircraft and processing stations, images are compressed prior to transmission to facilitate rapid transfer. In this paper we examine the problem of compressing sensor data for transmission, given that target recognition is the end goal. Performance result shows that the front-end target recognition system achieves a relatively high level of performance as well as a high compression ratio.

  • PDF

딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구 (A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images)

  • 조영준;김종원
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.20-25
    • /
    • 2021
  • 본 논문은 Deep-learning 기반의 검출모델을 이용하여 연속적으로 입력되는 비디오 이미지 내의 해당 대상체를 의미별로 분류해야하는 문제에 대한 구현방법에 관한 논문이다. 기존의 대상체 검출모델은 Deep-learning 기반의 검출모델로서 유사한 대상체 분류를 위해서는 방대한 DATA의 수집과 기계학습과정을 통해서 가능했다. 대상체 검출모델의 구조개선을 통한 유사물체의 인식 및 분류를 위하여 기존의 검출모델을 이용한 분류 문제를 분석하고 처리구조를 변경하여 개선된 비전처리 모듈개발을 통해 이를 기존 인식모델에 접목함으로써 대상체에 대한 인식모델을 구현하였으며, 대상체의 분류를 위하여 검출모델의 구조변경을 통해 고유성과 유사성을 정의하고 이를 검출모델에 적용하였다. 실제 축구경기 영상을 이용하여 대상체의 특징점을 분류의 기준으로 설정하여 실시간으로 분류문제를 해결하여 인식모델의 활용성 검증을 통해 산업에서의 활용도를 확인하였다. 기존의 검출모델과 새롭게 구성한 인식모델을 활용하여 실시간 이미지를 색상과 강도의 구분이 용이한 HSV의 칼라공간으로 변환하는 비전기술을 이용하여 기존모델과 비교 검증하였고, 조도 및 노이즈 환경에서도 높은 검출률을 확보할 수 있는 실시간 환경의 인식모델 최적화를 위한 선행연구를 수행하였다.