• Title/Summary/Keyword: Target Identification

Search Result 737, Processing Time 0.033 seconds

A Survey of Genetic Programming and Its Applications

  • Ahvanooey, Milad Taleby;Li, Qianmu;Wu, Ming;Wang, Shuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1765-1794
    • /
    • 2019
  • Genetic Programming (GP) is an intelligence technique whereby computer programs are encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other words, the GP employs novel optimization techniques to modify computer programs; imitating the way humans develop programs by progressively re-writing them for solving problems automatically. Trial programs are frequently altered in the search for obtaining superior solutions due to the base is GA. These are evolutionary search techniques inspired by biological evolution such as mutation, reproduction, natural selection, recombination, and survival of the fittest. The power of GAs is being represented by an advancing range of applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one of the most significant uses of GAs is the automatic generation of programs. Technically, the GP solves problems automatically without having to tell the computer specifically how to process it. To meet this requirement, the GP utilizes GAs to a "population" of trial programs, traditionally encoded in memory as tree-structures. Trial programs are estimated using a "fitness function" and the suited solutions picked for re-evaluation and modification such that this sequence is replicated until a "correct" program is generated. GP has represented its power by modifying a simple program for categorizing news stories, executing optical character recognition, medical signal filters, and for target identification, etc. This paper reviews existing literature regarding the GPs and their applications in different scientific fields and aims to provide an easy understanding of various types of GPs for beginners.

Immune Response of BALB/c Mice toward Putative Calcium Transporter Recombinant Protein of Trichomonas vaginalis

  • Mendoza-Oliveros, Tahali;Arana-Argaez, Victor;Alvarez-Sanchez, Leidi C.;Lara-Riegos, Julio;Alvarez-Sanchez, Maria Elizbeth;Torres-Romero, Julio C.
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Trichomoniasis is a common sexually transmitted infection caused by Trichomonas vaginalis, which actually does not exist a vaccine for control or prevention. Thus, the identification of new and potent immunogens in T. vaginalis, which can contribute to the development of a vaccine against this parasite, is necessary. Therefore, the aim of this work was to evaluate the potential of a recombinant Transient Receptor Potential-like channel of T. vaginalis (TvTRPV), as a promising immunogen in BALB/c mice. First, TvTRPV was cloned and expressed as a recombinant protein in Escherichia coli BL21 cells and purified by nickel affinity. Next, BALB/c mice were immunized and the antibody levels in mice serum and cytokines from the supernatant of macrophages and from co-culture systems were evaluated. Recombinant TvTRPV triggered high levels of specific total IgG in sera from the immunized mice. Also, a statistically significant increase of cytokines: $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ after stimulation with the corresponding antigens in vitro, was identified. Moreover, co-cultures using $CD4^+$ T cells from immunized mice were able to identify higher levels of IL-10 and $IFN-{\gamma}$. These results were useful to validate the immunogenicity of TvTRPV in BALB/c mice, where IL-10-$IFN-{\gamma}$-secreting cells could play a role in infection control, supporting the potential of TvTRPV as a promising target for vaccine against T. vaginalis.

Real-Time Hardware Design of Image Quality Enhancement Algorithm using Multiple Exposure Images (다중 노출 영상을 이용한 영상의 화질 개선 알고리즘의 실시간 하드웨어 설계)

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1462-1467
    • /
    • 2018
  • A number of algorithms for improving the image quality of low light images have been studied using a single image or multiple exposure images. The low light image is low in contrast and has a large amount of noise, which limits the identification of information of the subject. This paper proposes the hardware design of algorithms that improve the quality of low light image using 2 multiple exposure images taken with a dual camera. The proposed hardware structure is designed in real time processing in a way that does not use frame memory and line memory using transfer function. The proposed hardware design has been designed using Verilog and validated in Modelsim. Finally, when the proposed algorithm is implemented on FPGA using xc7z045-2ffg900 as the target board, the maximum operating frequency is 167.617MHz. When the image size is 1920x1080, the total clock cycle time is 2,076,601 and can be processed in real time at 80.7fps.

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains (geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

Identification of Putative Regulatory Alterations Leading to Changes in Gene Expression in Chronic Obstructive Pulmonary Disease

  • Kim, Dong-Yeop;Kim, Woo Jin;Kim, Jung-Hyun;Hong, Seok-Ho;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.333-344
    • /
    • 2019
  • Various genetic and environmental factors are known to be associated with chronic obstructive pulmonary disease (COPD). We identified COPD-related differentially expressed genes (DEGs) using 189 samples accompanying either adenocarcinoma (AC) or squamous cell carcinoma (SC), comprising 91 normal and 98 COPD samples. DEGs were obtained from the intersection of two DEG sets separately identified for AC and SC to exclude the influence of different cancer backgrounds co-occurring with COPD. We also measured patient samples named group 'I', which were unable to be determined as normal or COPD based on alterations in gene expression. The Gene Ontology (GO) analysis revealed significant alterations in the expression of genes categorized with the 'cell adhesion', 'inflammatory response', and 'mitochondrial functions', i.e., well-known functions related to COPD, in samples from patients with COPD. Multi-omics data were subsequently integrated to decipher the upstream regulatory changes linked to the gene expression alterations in COPD. COPD-associated expression quantitative trait loci (eQTLs) were located at the upstream regulatory regions of 96 DEGs. Additionally, 45 previously identified COPD-related miRNAs were predicted to target 66 of the DEGs. The eQTLs and miRNAs might affect the expression of 'respiratory electron transport chain' genes and 'cell proliferation' genes, respectively, while both eQTLs and miRNAs might affect the expression of 'apoptosis' genes. We think that our present study will contribute to our understanding of the molecular etiology of COPD accompanying lung cancer.

Identification of Serial DNA Methylation Changes in the Blood Samples of Patients with Lung Cancer

  • Moon, Da Hye;Kwon, Sung Ok;Kim, Woo Jin;Hong, Yoonki
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.2
    • /
    • pp.126-132
    • /
    • 2019
  • Background: The development of lung cancer results from the interaction between genetic mutations and dynamic epigenetic alterations, although the exact mechanisms are not completely understood. Changes in DNA methylation may be a promising biomarker for early detection and prognosis of lung cancer. We evaluated the serial changes in genome-wide DNA methylation patterns in blood samples of lung cancer patients. Methods: Blood samples were obtained for three consecutive years from three patients (2 years before, 1 year before, and after lung cancer detection) and from three control subjects (without lung cancer). We used the MethylationEPIC BeadChip method, which covers the 850,000 bp cytosine-phosphate-guanine (CpG) site, to conduct an epigenome-wide analysis. Significant differentially methylated regions (DMRs) were identified using p-values <0.05 in a correlation test identifying serial methylation changes and serial increase or decrease in ${\beta}$ value above 0.1 for three consecutive years. Results: We found three significant CpG sites with differentially methylated ${\beta}$ values and 7,105 CpG sites with significant correlation from control patients without lung cancer. However, there were no significant DMRs. In contrast, we found 11 significant CpG sites with differentially methylated ${\beta}$ values and 10,562 CpG sites with significant correlation from patients with lung cancer. There were two significant DMRs: cg21126229 (RNF212) and cg27098574 (BCAR1). Conclusion: This study revealed DNA methylation changes that might be implicated in lung cancer development. The DNA methylation changes may be the possible candidate target regions for the early detection and prevention of lung cancer.

Construction of a cDNA library of Aphis gossypii Glover for use in RNAi

  • KWON, HyeRi;KIM, JungGyu;LIM, HyounSub;YU, YongMan;YOUN, YoungNam
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.384-389
    • /
    • 2018
  • Aphis gossypii Glover is an important insect pest that functions as a viral vector and mediates approximately 45 different viral diseases. As part of a strategy for control of A. gossypii, we investigated the functions of genes using RNAi. To this end, a cDNA library was constructed for various genes and for selecting appropriate targets for RNAi mediated silencing. The cDNA library was constructed using the Gateway cloning system with site-specific recombination of bacteriophage ${\lambda}$. It was used to carry out single step cloning of A. gossypii cDNAs. As a result, a cDNA library with a titer of $8.4{\times}10^6$ was constructed. Since the sequences in this library carry att sites, they can be cloned into various binary vectors. This library will be of value for various studies. For later screening of selected genes, it is planned to clone the library into virus-induced gene silencing (VIGS) vectors, which makes it possible to analyze gene function and allow subsequent transfection of plants. Such transfection experiments will allow testing of RNAi-induced insecticidal activity or repellent activity to A. gossypii, and result in the identification of target genes. It is also expected that the constructed cDNA library will be useful for analysis of gene functions in A. gossypii.

Checkpoint-inhibition in ovarian cancer: rising star or just a dream?

  • Pietzner, Klaus;Nasser, Sara;Alavi, Sara;Darb-Esfahani, Silvia;Passler, Mona;Muallem, Mustafa Zelal;Sehouli, Jalid
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.93.1-93.11
    • /
    • 2018
  • The introduction of checkpoint inhibitors revolutionized immuno-oncology. The efficacy of traditional immunotherapeutics, like vaccines and immunostimulants was very limited due to persistent immune-escape strategies of cancer cells. Checkpoint inhibitors target these escape mechanisms and re-direct the immune system to anti-tumor toxicity. Phenomenal results have been reported in entities like melanoma, where no other therapy was able to demonstrate survival benefit, before the introduction of immunotherapeutics. The first experience in ovarian cancer (OC) was reported for nivolumab, a fully human anti-programmed cell death protein 1 (PD1) antibody, in 2015. While the data are extraordinary for a mono-immunotherapeutic agent and very promising, they do not match up to the revolutionary results in entities like melanoma. The key to exceptional treatment response in OC, could be the identification of the most immunogenic patients. We hypothyse that BRCA mutation could be a predictor of improved response in OC. The underlying DNA-repair-deficiancy should result in increased immunogenicity because of higher mutational load and more neoantigen presentation. This hypothesis was not tested to date and should be subject to future trials. The present article gives an overview of the immunologic background of checkpoint inhibition (CI). It presents current data on nivolumab and other checkpoint-inhibitors in solid tumors and OC specifically and depicts important topics in the management of this novel substance group, such as side effect control, diagnostic PD-1/programmed cell death-ligand 1 (PD-L1) expression assessment and management of pseudoprogression.

Identification of G Protein Coupled Receptors Expressed in Fat Body of Plutella Xylostella in Different Temperature Conditions (온도 차이에 따른 배추좀나방 유충 지방체에서 발현되는 G 단백질 연관 수용체의 동정)

  • Kim, Kwang Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • BACKGROUND: G protein-coupled receptors (GPCRs) are widely distributed in various organisms. Insect GPCRs shown as in vertebrate GPCRs are membrane receptors that coordinate or involve in various physiological processes such as learning/memory, development, locomotion, circadian rhythm, reproduction, etc. This study aimed to identify GPCRs expressed in fat body and compare the expression pattern of GPCRs in different temperature conditions. METHODS AND RESULTS: To identify GPCRs genes and compare their expression in different temperature conditions, total RNAs of fat body in Plutella xylostella larva were extracted and the transcriptomes have been analyzed via next generation sequencing method. From the fat body transcriptomes, genes that belong to GPCR Family A, B, and F were identified such as opsin, gonadotropin-releasing hormone receptor, neuropeptide F (NPF) receptor, muthuselah (Mth), diuretic hormone receptor, frizzled, etc. Under low temperature, expressions of GPCRs such as C-C chemokine receptor (CCR), opsin, prolactin-releasing peptide receptor, substance K receptor, Mth-like receptor, diuretic hormone receptor, frizzled and stan were higher than those at 25℃. They are involved in immunity, feeding, movement, odorant recognition, diuresis, and development. In contrast to the control (25℃), at high temperature GPCRs including CCR, gonadotropin-releasing hormone receptor, moody, NPF receptor, neuropeptide B1 receptor, frizzled and stan revealed higher expression whose biological functions are related to immunity, blood-brain barrier formation, feeding, learning, and reproduction. CONCLUSION: Transcriptome of fat body can provide understanding the pools of GPCRs. Identifications of fat body GPCRs may contribute to develop new targets for the control of insect pests.

Classification of Summer Paddy and Winter Cropping Fields Using Sentinel-2 Images (Sentinel-2 위성영상을 이용한 하계 논벼와 동계작물 재배 필지 분류 및 정확도 평가)

  • Hong, Joo-Pyo;Jang, Seong-Ju;Park, Jin-Seok;Shin, Hyung-Jin;Song, In-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.51-63
    • /
    • 2022
  • Up-to-date statistics of crop cultivation status is essential for farm land management planning and the advancement in remote sensing technology allows for rapid update of farming information. The objective of this study was to develop a classification model of rice paddy or winter crop fields based on NDWI, NDVI, and HSV indices using Sentinel-2 satellite images. The 18 locations in central Korea were selected as target areas and photographed once for each during summer and winter with a eBee drone to identify ground truth crop cultivation. The NDWI was used to classify summer paddy fields, while the NDVI and HSV were used and compared in identification of winter crop cultivation areas. The summer paddy field classification with the criteria of -0.195