• Title/Summary/Keyword: Target DNA

Search Result 786, Processing Time 0.027 seconds

The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells (윤폐산에 의한 폐암세포 증식억제기전에 관한 연구)

  • Kang Yun-Keong;Park Dong Il;Lee Jun Hyuk;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

Antitumor Toxic Protein Abrin and Abrus Agglutinin

  • Liu, Chao-Lin;Lin, Jung-Yaw
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.109-115
    • /
    • 2001
  • Abrus agglutinin was purified from the kernels of Abrus precatorius by Sepharose 4B affinity column chromatography followed by Sephadex G-100 gel filtration column chromatography. About 1.25 g of abrus agglutinin was obtained from 1 kg of the kernels. The LD$_{50}$ of abrus agglutinin is 5 mg/kg of body weight, which is less toxic than that of abrin, 20$\mu\textrm{g}$/kg body weight. The amino acid sequence of abrus agglutinin was determined by protein sequencing techniques and deduced from the nucleotide sequence of a cDNA clone encoding full length of abrus agglutinin. There are 258 residues, 2 residues and 267 residues in the A-chain, the linker peptide and the B-chain of abrus agglutinin, respectively. Abrus agglutinin had high homology to abrin-a (77.8%). The 13 amino acid residues involved in catalytic function, which are highly conserved among abrin and ricin, were also conserved within abrus agglutinin. The protein synthesis inhibitory activity of abrus agglutinin ($IC_{50}$/ = 3.5 nM) was weaker than that of abrin-a (0.05 nM). By molecular modeling followed by site-directed mutagenesis showed that Pro199 of abrus agglutinin A-chain located in amphipathic helix H and corresponding to Asn200 of abrin A-chain, can induce bending of helix H. This bending would presumably affect the binding of abrus agglutinin A-chain to its target sequence GpApGpAp, in the tetraloop structure of 285 r-RNA subunit and this could be one of major factors contributing to the relatively weak protein synthesis inhibitory activity and toxicity of abrus agglutinin.n.

  • PDF

Tristetraprolin Regulates Prostate Cancer Cell Growth Through Suppression of E2F1

  • Lee, Hyun Hee;Lee, Se-Ra;Leem, Sun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.287-294
    • /
    • 2014
  • The transcription factor E2F1 is active during G1 to S transition and is involved in the cell cycle and progression. A recent study reported that increased E2F1 is associated with DNA damage and tumor development in several tissues using transgenic models. Here, we show that E2F1 expression is regulated by tristetraprolin (TTP) in prostate cancer. Overexpression of TTP decreased the stability of E2F1 mRNA and the expression level of E2F1. In contrast, inhibition of TTP using siRNA increased the E2F1 expression. E2F1 mRNA contains three AREs within the 3'UTR, and TTP destabilized a luciferase mRNA that contained the E2F1 mRNA 3'UTR. Analyses of point mutants of the E2F1 mRNA 3'UTR demonstrated that ARE2 was mostly responsible for the TTP-mediated destabilization of E2F1 mRNA. RNA EMSA revealed that TTP binds directly to the E2F1 mRNA 3'UTR of ARE2. Moreover, treatment with siRNA against TTP increased the proliferation of PC3 human prostate cancer cells. Taken together, these results demonstrate that E2F1 mRNA is a physiological target of TTP and suggests that TTP controls proliferation as well as migration and invasion through the regulation of E2F1 mRNA stability.

Investigation of KIT Gene Polymorphisms in Korean Cattle

  • Hoque, Md. Rashedul;Lee, Seung-Hwan;Lim, Da-Jeong;Cho, In-Cheol;Choi, Nu-Ri;Seo, Dong-Won;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.411-418
    • /
    • 2012
  • KIT gene is the major causative gene for coat color variation in diverse animal species. This gene regulates melanocyte migration from the neural crest to target tissues and the mutation of this gene can affect dominant white phenotypes in animals. Because this gene has a major influence for the coat color variation, single nucleotide polymorphisms (SNPs) in 14 Korean cattle (Hanwoo) and 5 Holstein individuals were investigated. The Hanwoo DNA samples included three different colored (5 Black, 5 Yellow and 4 Stripe) animals. Total 126 polymorphisms have been identified and 23 of them are located in the exon region. Also, 5 bp (TTCTC) and 3 bp (TCT) intronic indels in intron 3 and intron 5, respectively, were identified. Out of 23 exonic polymorphisms, 15 SNPs are the missense mutations and the rest of the SNPs are silence mutations. The neighbor-joining phylogenetic tree was constructed for the different colored animals using the obtained KIT gene sequences. Holstein breed showed a clear breed-specific cluster in the phylogenetic tree which is differed from Hanwoo. Also, three colored Hanwoo animals were not discriminated among the breeds. The KIT gene polymorphisms identified in this study will possibly give some solutions for the color variations in cattle with further verifications.

Study on the construction of a starvation promoter vector system derived from Pseudomonas putida (Pseudomonas putida 에서 분리된 starvation promoter를 이용한 vector의 개발 및 응용에 관한 연구)

  • Kim, Young-Jun;Kim, Dae-Sun;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2003
  • Starvation promoters can be utilized for in situ bioremediation and for the efficient bioprocessing. Previously we have cloned and characterized strong starvation promoters from envrionmentally relevant bacteria, Pseudomonas putida strains (Y. Kim, and A. Matin, J. Bacteriol. 177:1850-1859, 1995). Here we report the construction of the plasmid pYKS101 using one of the starvation promoters from P. putida MK1. The pYKS101 was found to be useful for a novel starvation promoter-driven gene expression system. Under this system, the target reporter gene, lacZ, was stably integrated into the chromosomal DNA of P. putida MK1. ${\beta}$-galactosidase activity was found to be four-fold higher upon carbon starvation than during exponential growth. The resultant recombinant strain is indigenous to the environment contaminated with various toxic materials, hence can be a good candidate for in situ bioremediation.

  • PDF

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

Magnolol Inhibits LPS-induced NF-${\kappa}B$/Rel Activation by Blocking p38 Kinase in Murine Macrophages

  • Li, Mei Hong;Kothandan, Gugan;Cho, Seung-Joo;Huong, Pham Thi Thu;Nan, Yong Hai;Lee, Kun-Yeong;Shin, Song-Yub;Yea, Sung-Su;Jeon, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.353-358
    • /
    • 2010
  • This study demonstrates the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to inhibit LPS-induced expression of iNOS gene and activation of NF-${\kappa}B$/Rel in RAW 264.7 cells. Immunohisto-chemical staining of iNOS and Western blot analysis showed magnolol to inhibit iNOS gene expression. Reporter gene assay and electrophoretic mobility shift assay showed that magnolol inhibited NF-${\kappa}B$/Rel transcriptional activation and DNA binding, respectively. Since p38 is important in the regulation of iNOS gene expression, we investigated the possibility that magnolol to target p38 for its anti-inflammatory effects. A molecular modeling study proposed a binding position for magnolol that targets the ATP binding site of p38 kinase (3GC7). Direct interaction of magnolol and p38 was further confirmed by pull down assay using magnolol conjugated to Sepharose 4B beads. The specific p38 inhibitor SB203580 abrogated the LPS-induced NF-${\kappa}B$/Rel activation, whereas the selective MEK-1 inhibitor PD98059 did not affect the NF-${\kappa}B$/Rel. Collectively, the results of the series of experiments indicate that magnolol inhibits iNOS gene expression by blocking NF-${\kappa}B$/Rel and p38 kinase signaling.

Establishment and Characterization of MTDH Knockdown by Artificial Micro RNA Interference - Functions as a Potential Tumor Suppressor in Breast Cancer

  • Wang, Song;Shu, Jie-Zhi;Cai, Yi;Bao, Zheng;Liang, Qing-Mo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2813-2818
    • /
    • 2012
  • Background: Considerable evidence suggests that metadherin (MTDH) is a potentially crucial mediator of tumor malignancy and an important therapeutic target for simultaneously enhancing chemotherapy efficacy and reducing metastasis risk. Inhibition of MTDH expression by RNA interference has been shown in several previous research, but silencing MTDH expression by microRNA (miRNA) interference in breast cancer has not been established. In the present study, we investigated the role of MTDH-miRNA in down-regulation of proliferation, motility and migration of breast carcinoma cells. Methods: Expression vectors of recombinant plasmids expressing artificial MTDH miRNA were constructed and transfected to knockdown MTDH expression in MDA-MB-231 breast cancer cells. Expression of MTDH mRNA and protein was detected by RT-PCR and Western blot, respectively. MTT assays were conducted to determine proliferation, and wound healing assays and transwell migration experiments for cell motility and migration. Results: Transfection of recombinant a plasmid of pcDNA-MTDH-miR-4 significantly suppressed the MTDH mRNA and protein levels more than 69% in MDA-MB-231 breast cancer cells. This knockdown significantly inhibited proliferation, motility and migration as compared with controls. Conclusions: MTDH-miRNA may play an important role in down-regulating proliferation, motility and migration in breast cancer cells, and should be considered as a potential small molecule inhibitor therapeutic targeting strategy for the future.

Comparative Superiority of in vitro Activity of DW-224a Supported by the Downward MIC Distribution in Ciprofloxacin-resistant Staphylococcus aureus (시프로플록사신 내성 황색 포도상 구균에서 MIC의 하향 분포로 입증된 DW-224a의 in vitro 항균 활성의 비교 우수성)

  • Yoon, Eun-Jeong;Lee, Chun-Yeong;Lee, Jong-Seo;Choe, Eung-Chil;Shim, Mi-Ja
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.431-435
    • /
    • 2009
  • The comparative superior in vitro activity of DW-224a was supported by the downward MIC distribution due to the weakened influence of alterations within target enzymes in ciprofloxacin-resistant Staphylococcus aureus. The MI$C_{50}$ for DW-224a was 4 $\mu$g/mL, similar to that of gemifloxacin, 8-fold less than that of sparfloxacin and 16-over-fold less than that of ciprofloxacin. We constructed combinations of amino acid changes, located at codon 80, 83 or 84 within GrlA and 84, 85 or 88 within GyrA, which were associated with MIC increase. The amino acid changes were less influential to the MIC of DW-224a compared to those of other fluoroquinolones, and it was verified from the requirement of a total of two GrlA- and two GyrA-alterations to reach the MIC of DW-224a over 32 $\mu$g/mL.

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.