Browse > Article
http://dx.doi.org/10.5713/ajas.14.0734

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity  

Khoa, D.V.A. (Department of Animal Sciences, College of Agriculture and Applied Biology, Can Tho University)
Wimmers, K. (Institute for Genome Biology at the Leibniz Institute for Farm Animal Biology (FBN-dummerstorf))
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.9, 2015 , pp. 1354-1361 More about this Journal
Abstract
The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.
Keywords
Porcine C9; Polymorphisms; Hemolytic Complement Activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Miletic, V. D. and M. M. Frank. 1995. Complement-immunoglobulin interactions. Curr. Opin. Immunol. 7:41-47.   DOI   ScienceOn
2 Mold, C., B. M. Bradt, G. R. Nemerow, and N. R. Cooper. 1988. Activation of the alternative complement pathway by EBV and the viral envelope glycoprotein, gp350. J. Immunol. 140: 3867-3874.
3 Mondragon-Palomino, M., D. Pinero, A. Nicholson-Weller, and J. P. Laclette. 1999. Phylogenetic analysis of the homologous proteins of the terminal complement complex supports the emergence of C6 and C7 followed by C8 and C9. J. Mol. Evol. 49:282-289.   DOI
4 Muller-Eberhard, H. J. 1986. The membrane attack complex of complement. Annu. Rev. Immunol. 4:503-528.   DOI   ScienceOn
5 Phatsara, C., D. G. J. Jennen, S. Ponsuksili, E. Murani, D. Tesfaye, K. Schellander, and K. Wimmers. 2007. Molecular genetic analysis of porcine mannose-binding lectin genes, MBL1 and MBL2, and their association with complement activity. Int. J. Immunogenet. 34:55-63.   DOI   ScienceOn
6 Podack, E. R., J. Tschoop, and H. J. Muller-Eberhard. 1982. Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J. Exp. Med. 156:268-282.   DOI
7 Reid, K. B. M. and R. R. Porter. 1981. The proteolytic activation systems of complement. Annu. Rev. Biochem. 50:433-464.   DOI   ScienceOn
8 Rosado, C. J., A. M. Buckle, R. H. Law, R. E. Butcher, W. T. Kan, C. H. Bird, K. Ung, K. A. Browne, K. Baran, T. A. Bashtannyk-Puhalovich, N. G. Faux, W. Wong, C. J. Porter, R. N. Pike, A. M. Ellisdon, M. C. Pearce, S. P. Bottomley, J. Emsley, A. I. Smith, J. Rossjohn, E. L. Hartland, I. Voskoboinik, J. A. Trapani, P. I. Bird, M. A. Dunstone, and J. C. Whisstock. 2007. A common fold mediates vertebrate defense and bacterial attack. Science 317(5844):1548-1551.   DOI   ScienceOn
9 Rosendal, S. 1994. Ovine and caprine mycoplasmas. In: Mycoplasmosis in Animals: Laboratory Diagnosis (Eds. H. W. Whitford, R. F. Rosenbush, and L. H. Lauerman). Iowa State University Press, Ames, IA, USA. 84-96.
10 Rozen, S. and H. J. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. In: Bioinformatics Methods and Protocols (Eds. S. Krawetz and S. Misener). Methods Mol. Biol. 132:365-386.
11 Stanley, K. K., H. P. Kocher, J. P. Luzio, P. Jackson, and J. Tschopp. 1985. The sequence and topology of human complement component C9. EMBO J. 4:375-382.
12 Stolfi, R. L. 1968. Immune lytic transformation: A state of irreversible damage generated as a result of the reaction of the eighth component in the guinea pig complement system. J Immunol. 100:46-54.
13 Sutherland, M. A., S. L. Rodriguez-Zas, M. Ellis, and J. L. Salak-Johnson. 2005. Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J. Anim. Sci. 83: 2087-2095.
14 Thacker, E. L. 2003. Immunology - the innate immune system. Pig J. 52:111-123.
15 Thomsen, D. P., A. K. Wintero, and M. Fredholm. 1998. Chromosomal assignments of 19 porcine cDNA sequences by FISH. Mamm. Genome 9:394-396.   DOI
16 Tschopp, J. 1984. Circular polymerization of the membranolytic ninth component of complement. Dependence on metal ions. J. Biol. Chem. 259:10569-0573.
17 Tschopp, J. 1984. Ultrastructure of the membrane attack complex of complement. Heterogeneity of the complex caused by different degree of C9 polymerization. J. Biol. Chem. 259: 7857-7863.
18 Wimmers, K., D. V. A. Khoa, S. Schutze, E. Murani, and S. Ponsuksili. 2011. The three-way relationship of polymorphisms of porcine genes encoding terminal complement components, their differential expression, and health-related phenotypes. BMC Proc. 5(4):S19.
19 Volanakis, J. E. 1998. Overview of the complement system. In: The Human Complement System in Health and Disease (Eds. J. E. Volanakis and M. Frank). Marcel Dekker Inc., New York, NY, USA. 9-32.
20 Wimmers, K., S. Mekchay, K. Schellander, and S. Ponsuksili. 2003. Molecular characterization of the pig C3 gene and its association with complement activity. Immunogenetics 54: 714-724.
21 Yamamoto, T., C. G. Davis, M. S. Brown, W. J. Schneider, M. L. Casey, J. L. Goldstein, and D. W. Russell. 1984. The human LDL receptor: A cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39:27-38.   DOI   ScienceOn
22 DiScipio, R. G., M. R. Gehring, E. R. Podack, C. C. Kan, T. E. Hugli, and G. H. Fey. 1984. Nucleotide sequence of cDNA and derived amino acid sequence of human complement component C9. Proc. Nat. Acad. Sci. 81:7298-7302.   DOI
23 Bredt, W., B. Wellek, H. Brunner, and M. Loos. 1977. Interactions between mycoplasma pneumoniae and the first components of complement. Infect. Immun. 15:7-12.
24 Castell, J. V., M. J. Gomez-Lechon, M. David, T. Andus, T. Geiger, R. Trullenque, R. Fabra, and P. C. Heinrich. 1989. Interleukin- 6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 242:237-239.   DOI   ScienceOn
25 Chomczynski, P. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532-534.
26 Chomcznski, P. and K. Mackey. 1995. Modification of the Tri Reagent procedure for isolation of RNA from polysaccharideand proteoglycan-rich sources. Biotechniques 19:942-945.
27 Demey, F., V. S. Pandey, R. Baelmans, G. Agbede, and A. Verhulst. 1993. The effect of storage at low temperature on the haemolytic complement activity of chicken serum. Vet. Res. Commun. 17:37-40.   DOI
28 Do, V. A. K. 2010. Porcine terminal complement genes C6-9: Molecular characterization of terminal complement genes and their association with hemolytic complement activity in pigs. VDM Verlag Dr. Muller Publisher. Berlin, Germany.
29 Gonzalez-Ramon, N., K. Hoebe, M. A. Alava, L. Van Leengoed, M. Pineiro, S. Carmona, M. Iturralde, F. Lampreave, and A. Pineiro. 2000. Pig MAP/ITIH4 and haptoglobin are interleukin-6-dependent acute-phase plasma proteins in porcine primary cultured hepatocytes. Eur. J. Biochem. 267: 1878-1885.   DOI   ScienceOn
30 Hadding, U. and H. J. Muller-Eberhard. 1969. The ninth component of human complement: Isolation, description and mode of action. Immunology 16:719-735.
31 Hardge, T., K. Koepke, M. Reissman, and K. Wimmers. 1999. Maternal influences on litter size and growth in reciprocol crossed Miniature Pigs and Durocs. Arch. Anim. Breed. 42:83-92.
32 Kira, R., K. Ihara, H. Takada, K. Gondo, and T. Hara. 1998. Nonsense mutation in exon 4 of human complement C9 gene is the major cause of Japanese complement C9 deficiency. Hum. Genet. 102:605-610.   DOI   ScienceOn
33 Ichikawa, E., J. Furuta, Y. Kawachi, S. Imakado, and F. Otsuka. 2001. Hereditary complement (C9) deficiency associated with dermatomyositis. Br. J. Dermatol. 144:1080-1083.   DOI   ScienceOn
34 Inai, S., H. Kitamura, S. Hiramatsu, and K. Nagaki. 1979. Deficiency of the ninth component of complement in man. J. Clin. Lab. Immunol. 2:85-87.
35 Katagiri, T., L. Hirono, and T. Aoki. 1999. Molecular analysis of complement component $C8\beta$ and C9 cDNAs of Japanese flounder, Paralichthys olivaceus. Immunogenetics 50:43-48.   DOI
36 Kolb, W. P., J. A. Haxby, C. M. Arroyave, and H. J. Muller-Eberhard. 1972. Molecular analysis of the membrane attack mechanism of complement. J. Exp. Med. 135:549-566.   DOI   ScienceOn
37 Kumar, K. G., S. Ponsuksili, K. Schellander, and K. Wimmers. 2004. Molecular cloning and sequencing of porcine C5 gene and its association with immunological traits. Immunogenetics 55:811-817.   DOI
38 Liu, C. C. and J. D. Young. 1988. A semi-automated microassay for complement activity. J. Immunol. Methods 114:33-39.   DOI   ScienceOn
39 Mackiewicz, A., M. K. Ganapathi, D. Schultz, A. Brabenec, J. Weinstein, M. F. Kelley, and I. Kushner. 1990. Transforming growth factor beta 1 regulates production of acute-phase proteins. Proc. Natl. Acad. Sci. USA 87:1491-495.   DOI   ScienceOn
40 Mayes, J. T., R. D. Schreiber, and N. R. Cooper. 1984. Development and application of an enzyme-linked immunosorbent assay for the quantitation of alternative complement pathway activation in human serum. J. Clin. Invest. 73:160-170.   DOI