• Title/Summary/Keyword: Target Bar

Search Result 115, Processing Time 0.025 seconds

Passing Performance of HPC Between Reirforcing Bar with Maximum Size of Coarse Aggregate (굵은골재의 최대치수에 따른 고성능 콘크리트의 간극통과성)

  • Yoon, Seob;Baik, Dae-Hyun;Kim, Jung-Bin;Park, Chang-Soo;Lee, Seong-Yeun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.129-132
    • /
    • 2006
  • This paper is to investigate passing performance of high performance concrete between reinforcing bar depending on maximum size of coarse aggregates. Increase in maximum size of coarse results in decrease in water demand and sand to aggregate to secure target slump flow. The larger the maximum size of coarse aggregates is, the denser the space between reinforcing bar is, the amount of concrete passed through the reinforcing bar cage shows to decrease. HPC has favorable passing performance, regardless of aggregate size, when only vertical reinforcing bar is arranged. Whereas, when vertical and horizontal reinforcing bar is arranged at the same time, proper space between reinforcing bar is considered larger than 32mm in case of using 20mm coarse aggregate, 38mm in case of using 25mm aggregate. The increase in maximum size of coarse aggregate leads to increase compressive strength slightly. Length change shows to be decreased with the increase in maximum size of coarse aggregate.

  • PDF

Real-time Robotic Vision Control Scheme Using Optimal Weighting Matrix for Slender Bar Placement Task (얇은 막대 배치작업을 위한 최적의 가중치 행렬을 사용한 실시간 로봇 비젼 제어기법)

  • Jang, Min Woo;Kim, Jae Myung;Jang, Wan Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • This paper proposes a real-time robotic vision control scheme using the weighting matrix to efficiently process the vision data obtained during robotic movement to a target. This scheme is based on the vision system model that can actively control the camera parameter and robotic position change over previous studies. The vision control algorithm involves parameter estimation, joint angle estimation, and weighting matrix models. To demonstrate the effectiveness of the proposed control scheme, this study is divided into two parts: not applying the weighting matrix and applying the weighting matrix to the vision data obtained while the camera is moving towards the target. Finally, the position accuracy of the two cases is compared by performing the slender bar placement task experimentally.

Quality Evaluation of UAV Images Using Resolution Target (해상도 타겟을 이용한 무인항공영상의 품질 평가)

  • LEE, Jae-One;SUNG, Sang-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.103-113
    • /
    • 2019
  • Spatial resolution is still one of the most important parameters for evaluating image quality. In this study, we propose an approach to evaluate spatial resolution and MTF(Modulation Transfer Function) using bar target and Siemens star chart as a part of quality evaluation for UAV images. To this end, images were taken with a fixed-wing eBee(Canon IXUS) at the flight height of 130m and 260m, and with a rotary-wing GD-800(SONY NEX-5N) at flight height of 130m, with a Phantom 4 pro(FC 6310) at flight height of 90m, respectively. Spatial resolution was measured on orthoimages produced from this data. Results show that the resolution measured on the Siemens star and bar target was accurately degraded in proportion to the flight height regardless of the cameras. In the words, the spatial resolution of images taken at the same altitude of 130m with the eBee(Canon IXUS) and the GD-800(SONY NEX-5N) equipped with different cameras was the same as 4.1cm, and that of the eBee(Canon IXUS) at 260m was 8.0cm. In addition, the resolution measured on the Siemens star was about 1~2cm lower than that of the bar target at every flight height. The general tendency was also found to be proportional to the flight height in the measurement of the ${\sigma}_{MTF}$ from MTF, which simultaneously represents the resolution and contrast information of the image. However, at the same altitude of 130m, the ${\sigma}_{MTF}$ of the GD-800(SONY NEX-5N) is 0.36 and the eBee(Canon IXUS) is 0.59, which shows that the GD-800(SONY NEX-5N) has better camera performance. It is expected that study results will contribute to the analysis of spatial resolution of UAV images and to improve the reliability of quality.

Effect of Soil Water Potential on Pysico-Chemical Properties of Soil and Cucumber(Cucumis sativus L.) Growth (토양(土壤) 수분(水分)포텐셜이 오이(Cucumis sativus L.)생육(生育)과 토양(土壤) 이화학적(理化學的 ) 특성(特性)에 미치는 영향(影響))

  • Bum, In-Sook;Kim, Yong-Woong;Kim, Kwang-Sik;Kim, Kil-Yong;Sohn, Bo-Kyoon;Kim, Hyun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.171-181
    • /
    • 1999
  • A field experiments was carried out to investigate the physicochemical properties of soil and cucumber growth in vinyl house when irrigation point was made at 0.2, 1/3, 0.5 and 1.0 bar. The obtained results was summarized as follow: The taxonomic class of the soil used was loam and each content of the required water was 4.4, 7.3, 9.6 and 13.4 mm per each irrigation time at 0.2, 1/3, 0.5 and 1.0 bar treatments in spring culture, respectively. At 0.2 bar and 1.0 bar treatments, interval of irrigation was 2.3 and 14.8 day, the times of irrigation was 37 and 6, and total irrigation volume was 163.5 and 80.3 mm, respectively. After cucumber culture, pH, EC concentration and exchangeable K content of soil at 0.2 bar treatment was distributed near to the level of improvement target while EC, available $P_2O_5$ and exchangeable base content in other treatments were higher compared to improvement target. At 1.0 bar treatment, ratios of the solid and liquid phase were 44.9 and 27.1%, respectively, and bulk density was $1.26g\;cm^{-3}$ which was the highest among the treatments. At 0.2 bar treatment, the ratio of the solid and liquid phase was 41.7 and 22.8%, respectively, and bulk density was $1.09g\;cm^{-3}$ which was the lowest. The root length and radius at 0.2 bar treatment were best, while those at 1/3 bar were worst. At 0.2 bar treatment, the total yield was 7,269 kg and the weight of good products was 5,677 kg which was the highest among treatments. At 0.33 bar treatment, the yield was the lowest with the high ratio of deformity.

  • PDF

Evaluation of Robot Vision Control Scheme Based on EKF Method for Slender Bar Placement in the Appearance of Obstacles (장애물 출현 시 얇은 막대 배치작업에 대한 EKF 방법을 이용한 로봇 비젼제어기법 평가)

  • Hong, Sung-Mun;Jang, Wan-Shik;Kim, Jae-Meung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.471-481
    • /
    • 2015
  • This paper presents the robot vision control schemes using Extended Kalman Filter (EKF) method for the slender bar placement in the appearance of obstacles during robot movement. The vision system model used for this study involves the six camera parameters($C_1{\sim}C_6$). In order to develop the robot vision control scheme, first, the six parameters are estimated. Then, based on the estimated parameters, the robot's joint angles are estimated for the slender bar placement. Especially, robot trajectory caused by obstacles is divided into three obstacle regions, which are beginning region, middle region and near target region. Finally, the effects of number of obstacles using the proposed robot's vision control schemes are investigated in each obstacle region by performing experiments of the slender bar placement.

Optimal Dimension Design and Stability Analysis of Non-slip Steel Grating (금속 그레이팅의 높이변화에 따른 최적치수 설계 및 안정성 해석)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • In this study, in order to develop an non-slip metal grating, the stability of the grating according to the span of the grating and the gap and height of the bearing bar was evaluated. The optimal shape design of the grating was performed using the results of determining the stability of the grating. The purpose of this study is to determine the stability according to the spacing and height of the bearing bar by applying the design pressure at the design stage to develop the anti-skid grating, and to design the optimal shape for cost reduction. In the optimal design, the target variable was set as the mass, and the optimal design of the grating was performed based on about 20%. Regardless of the height of the bearing bar of the grating, the stress and deformation of the span and the grating showed a proportional tendency to each other, and it was found that the stress decreased as the height of the bearing bar increased. Based on the structural analysis results, an optimal design was performed using mass as the objective variable, and the existing 2mm thickness was changed to 1.6mm, reducing the mass by about 19%. The stress increased by about 4.4% compared to the maximum stress of the existing grating, but the minimum safety factor was 3.1, indicating that the optimally designed grating was stable.

A Study on Measurement Error Factors of Theodolite System (데오도라이트 시스템의 측정 오차 요인에 대한 연구)

  • 윤용식;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.36-42
    • /
    • 2003
  • Theodolite measurement system is non-contacted 3-dimensional measurement system. The system accuracy is ${\pm}0.5mm$or better for distance 0~100m. And the system is used for the measurement of a product of middle and large scale. This study is performed for the measurement error factors of the system. We could know that the main measurement error factors are temperature, illumination and skill. Also, we performed the study for the effect according to the height difference of scale bar.

COLOR CORRECTION METHOD USING GRAY GRADIENT BAR FOR MULTI-VIEW CAMERA SYSTEM

  • Jung, Jae-Il;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.1-6
    • /
    • 2009
  • Due to the different camera properties of the multi-view camera system, the color properties of captured images can be inconsistent. This inconsistency makes post-processing such as depth estimation, view synthesis and compression difficult. In this paper, the method to correct the different color properties of multi-view images is proposed. We utilize a gray gradient bar on a display device to extract the color sensitivity property of the camera and calculate a look-up table based on the sensitivity property. The colors in the target image are converted by mapping technique referring to the look-up table. Proposed algorithm shows the good subjective results and reduces the mean absolute error among the color values of multi-view images by 72% on average in experimental results.

  • PDF

Application of Westgard Multi-Rules for Improving Nuclear Medicine Blood Test Quality Control (핵의학 검체검사 정도관리의 개선을 위한 Westgard Multi-Rules의 적용)

  • Jung, Heung-Soo;Bae, Jin-Soo;Shin, Yong-Hwan;Kim, Ji-Young;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.115-118
    • /
    • 2012
  • Purpose: The Levey-Jennings chart controlled measurement values that deviated from the tolerance value (mean ${\pm}2SD$ or ${\pm}3SD$). On the other hand, the upgraded Westgard Multi-Rules are actively recommended as a more efficient, specialized form of hospital certification in relation to Internal Quality Control. To apply Westgard Multi-Rules in quality control, credible quality control substance and target value are required. However, as physical examinations commonly use quality control substances provided within the test kit, there are many difficulties presented in the calculation of target value in relation to frequent changes in concentration value and insufficient credibility of quality control substance. This study attempts to improve the professionalism and credibility of quality control by applying Westgard Multi-Rules and calculating credible target value by using a commercialized quality control substance. Materials and Methods : This study used Immunoassay Plus Control Level 1, 2, 3 of Company B as the quality control substance of Total T3, which is the thyroid test implemented at the relevant hospital. Target value was established as the mean value of 295 cases collected for 1 month, excluding values that deviated from ${\pm}2SD$. The hospital quality control calculation program was used to enter target value. 12s, 22s, 13s, 2 of 32s, R4s, 41s, $10\bar{x}$, 7T of Westgard Multi-Rules were applied in the Total T3 experiment, which was conducted 194 times for 20 days in August. Based on the applied rules, this study classified data into random error and systemic error for analysis. Results: Quality control substances 1, 2, and 3 were each established as 84.2 ng/$dl$, 156.7 ng/$dl$, 242.4 ng/$dl$ for target values of Total T3, with the standard deviation established as 11.22 ng/$dl$, 14.52 ng/$dl$, 14.52 ng/$dl$ respectively. According to error type analysis achieved after applying Westgard Multi-Rules based on established target values, the following results were obtained for Random error, 12s was analyzed 48 times, 13s was analyzed 13 times, R4s was analyzed 6 times, for Systemic error, 22s was analyzed 10 times, 41s was analyzed 11 times, 2 of 32s was analyzed 17 times, $10\bar{x}$ was analyzed 10 times, and 7T was not applied. For uncontrollable Random error types, the entire experimental process was rechecked and greater emphasis was placed on re-testing. For controllable Systemic error types, this study searched the cause of error, recorded the relevant cause in the action form and reported the information to the Internal Quality Control committee if necessary. Conclusions : This study applied Westgard Multi-Rules by using commercialized substance as quality control substance and establishing target values. In result, precise analysis of Random error and Systemic error was achieved through the analysis of 12s, 22s, 13s, 2 of 32s, R4s, 41s, $10\bar{x}$, 7T rules. Furthermore, ideal quality control was achieved through analysis conducted on all data presented within the range of ${\pm}3SD$. In this regard, it can be said that the quality control method formed based on the systematic application of Westgard Multi-Rules is more effective than the Levey-Jennings chart and can maximize error detection.

  • PDF

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.