• Title/Summary/Keyword: Tapered Shape

Search Result 146, Processing Time 0.025 seconds

An Elastohydrodynamic Lubrication Analysis of Tapered Roller with Profiled Ends (프로파일링한 테이퍼 로울러의 탄성유체윤활 해석)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.28 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • Tapered roller bearings are widely used in high axial-load and radial-load applications. In this study, a numerical analysis is performed to study a finite line contacts EHL problem between a tapered roller and raceway in tapered roller bearings. Converged solutions are obtained for moderate load and material parameters using a finite difference method with non-uniform grids and the Newton-Raphson method. The contours and sectional plots of pressure distribution and film shape are compared. The pressure distribution and film shapes near both ends of the roller are very different from those in the central part and are transversely asymmetric. The maximum pressure and absolute minimum film thickness always occur at the small end of the roller.

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He;Yangchao Ru;Haifeng Bu;Ming Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Hosseinnejad, Hossein;Lotfollahi-Yaghin, Mohammad Ali;Hosseinzadeh, Yousef;Maleki, Ahmad
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

THREE-DIMENSIONAL FINI6E ELEMENT ANALYSIS OF THE ENDOSSEOUS IMPLANT DESIGNS (삼차원 유한요소 해석에 의한 골내 임프란트의 구조에 관한 연구)

  • Hyun, Young-Keun;Kwon, Jong-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.181-210
    • /
    • 1997
  • The stress distribution generated in the surrounding bone was calculated and compared for various geometry of the dental implants by means of the finite element methods. The models were designed to represent the screw type endosseous implants(varing the size, shape, direction of the screw thread and the angle of the body) with supporting bone and the cylinder type endosseous implants(varing the lower portion-Round type, tapered type) with supporting bone. Static mean bite forces were applied 100N vertically and 25N horizontally on the center of the implant and three dimensional finite analysis was undertaken using software ANSYS 5.1 Version. The result demonstrated that different implant shape leads to significant variations in stress distribution in the bone. In the case of variation of the screw size, direction and shape the implant model with normally directional and triangular screw implied lower stress than with upper directional or lower directional and quadrangular screw but among models a different screw size, within a variation of 0.2mm there was no meaningful difference in maximum stress. In the case of variation of angle of body the straight implied lower stress than the tapered. As a result of analysis of cylinder type, the implants with larger radius of curvature of the round form and larger diameter of the tapered form implied lower stress.

  • PDF

Development of Tapered Rolling Type Strip Pressure Key for the Prevention of Scratch (스크래치 방지를 위한 테이퍼 롤링형 판재 누름키의 개발)

  • Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4715-4720
    • /
    • 2010
  • In this study, we developed new tapered rolling type strip pressure key for the prevention of scratch in sheet metal forming line. The developed pressure key is equipped with two tapered rollers inside a conventional block pressure key. Through the scratch test, for the case of transversal movement the tapered rolling type pressure key reduces both friction and depth of scratch by the effect of tapered shape which decreases the pressure spike on edge, and for longitudinal movement the scratch on the sheet metal surface is certainly removed by the rolling contact.

AMDM for free vibration analysis of rotating tapered beams

  • Mao, Qibo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.419-432
    • /
    • 2015
  • The free vibration of rotating Euler-Bernoulli beams with the thickness and/or width of the cross-section vary linearly along the length is investigated by using the Adomian modified decomposition method (AMDM). Based on the AMDM, the governing differential equation for the rotating tapered beam becomes a recursive algebraic equation. By using the boundary condition equations, the dimensionless natural frequencies and the closed form series solution of the corresponding mode shapes can be easily obtained simultaneously. The computed results for different taper ratios as well as different offset length and rotational speeds are presented in several tables and figures. The accuracy is assured from the convergence and comparison with the previous published results. It is shown that the AMDM provides an accurate and straightforward method of free vibration analysis of rotating tapered beams.

A Study on Cutting Characteristic of Tapered Groove in Turning (선삭가공에서의 테이퍼 홈 절삭특성에 관한 연구)

  • Choi, Chi-Hyuk;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.27-32
    • /
    • 2011
  • In recently, it is demanded development of manufacturing techniques for machining of various mechanical parts. Therefore the development of turning is one of the important manufacturing techniques. In this study, an experimental shape in tapered groove turning was suggested, and the turning process was investigated by analyzing cutting speed, feed rate, tapered angle, depth of cut. The surface roughness and cutting force change in the workpiece was measured. From the results, the optimum machining conditions are obtained by design of experiments.

The effect of implant shape and bone preparation on primary stability

  • Moon, Sang-Hyun;Um, Heung-Sik;Lee, Jae-Kwan;Chang, Beom-Seok;Lee, Min-Ku
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.239-243
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the effects of implant shape and bone preparation on the primary stability of the implants using resonance frequency analysis. Methods: Sixty bovine rib blocks were used for soft and hard bone models. Each rib block received two types of dental implant fixtures; a straight-screw type and tapered-screw type. Final drilling was done at three different depths for each implant type; 1 mm under-preparation, standard preparation, and 1 mm over-preparation. Immediately after fixture insertion, the implant stability quotient (ISQ) was measured for each implant. Results: Regardless of the bone type, the ISQ values of the straight-screw type and tapered-screw type implants were not significantly different (P>0.05). Depth of bone preparation had no significant effect on the ISQ value of straight-screw type implants (P>0.05). For the tapered-screw type implants, under-preparation significantly increased the ISQ value (P<0.05), whereas overpreparation significantly decreased the ISQ value (P<0.05). Conclusions: Within the limitations of this study, it is concluded that bone density seemed to have a prevailing effect over implant shape on primary stability. The primary stability of the tapered-screw type implants might be enhanced by delicate surgical techniques.

Combustion Characteristics of Hybrid Rocket Fuel with Tapered Grain Port Shape (경사진 포트 형상을 가진 하이브리드 로켓 연료의 연소 특성)

  • Kim, Jae-Woo;Kim, Soo-Jong;Kim, Jin-Kon;Sung, Hong-Gye;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.511-514
    • /
    • 2009
  • In this study, the combustion characteristics of hybrid rocket fuel with tapered grain port were studied. The regression rate was increased about 17.5% by using the convergence port shape fuel. On the other hand, in case of divergence port shape fuel, any notable difference of regression rate was not observed when compared with regression rate of the cylindrical port shape fuel. Also, in case of convergence port shape fuel, characteristic velocity efficiency was increased. From these results, one can notice that convergence port shape of hybrid rocket fuel can be effective configuration in terms of improvement of combustion efficiency and performance.

  • PDF

Free vibration analysis of rotating tapered blades using Fourier-p superelement

  • Gunda, Jagadish Babu;Singh, Anuj Pratap;Chhabra, Parampal Singh;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.243-257
    • /
    • 2007
  • A numerically efficient superelement is proposed as a low degree of freedom model for dynamic analysis of rotating tapered beams. The element uses a combination of polynomials and trigonometric functions as shape functions in what is also called the Fourier-p approach. Only a single element is needed to obtain good modal frequency prediction with the analysis and assembly time being considerably less than for conventional elements. The superelement also allows an easy incorporation of polynomial variations of mass and stiffness properties typically used to model helicopter and wind turbine blades. Comparable results are obtained using one superelement with only 14 degrees of freedom compared to 50 conventional finite elements with cubic shape functions with a total of 100 degrees of freedom for a rotating cantilever beam. Excellent agreement is also shown with results from the published literature for uniform and tapered beams with cantilever and hinged boundary conditions. The element developed in this work can be used to model rotating beam substructures as a part of complete finite element model of helicopters and wind turbines.