• Title/Summary/Keyword: Tapered Rectangular Waveguide

Search Result 8, Processing Time 0.024 seconds

Analysis of a Tapered Rectangular Waveguide for V to W Millimeter Wavebands

  • Lee, Sangsu;Son, Dongchan;Kwon, Jae-Yong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.248-253
    • /
    • 2018
  • An electromagnetic boundary-value problem of a tapered rectangular waveguide is rigorously solved based on eigenfunction expansion and the mode-matching method. Scattering parameters of the tapered rectangular waveguide are represented in a series form and calculated in terms of different rectangular waveguide combinations. Computation is performed to analyze reflection and transmission characteristics. Conductor loss by surface current density is also calculated and discussed.

Design of Tapered Line with Improved Chebyshev Function Removed Discontinuities (Chebyshev 함수에 의한 테이퍼형 선로의 설계에서 임피던스 불연속 제거에 관한 연구)

  • 이종빈;이상호;김상태;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.620-628
    • /
    • 1997
  • When the Chebyshev function is applied to design the waveguide transition, it exhibits poor impedance matching characteristics due to impedance discontinuities at the ends of tapered line. In this paper, an improved Chebyshev function, which is obtained by using the convolution property, is proposed to make improvements on the impedance matching characteristics of the waveguide transition. When rectangular to circular waveguide transition is designed by improved function, then the computed return loss is approximately 5 dB better than the conventional Chebyshev function.

  • PDF

Calculation of Input Impedance of Nonuniformly Ridged Rectangular Waveguide (비균일 Ridge 구형 도파관의 입력 임피던스 계산)

  • 김세윤;박종국;김상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.167-177
    • /
    • 1996
  • The cutoff frequencies of a double ridged rectangular waveguide are calculated by applying the modal analysis to its cross-section. And the characteristic impedance of its $TE_{10}$ mode is evaluated in a frequency range of 6 to 18 GHz. When both ends of a linearly tapered rectangular wa- veguide consists of single and double ridged rectangular cross-sections, the equivalent nonuniform transmission line of its $TE_{10}$ mode is solved numerically. It is shown that the input impedance at its single ridged terminal becomes nearly constant in the wide bandwidth.

  • PDF

Design of Mode Transducer between $TE_{10}$ Mode in Rectangular Waveguide and $TE_{11}$ Mode in Circular Waveguide (구형 도파관 $TE_{10}$모드와 원형 도파관 $TE_{11}$모드간의 모드변환기 설계)

  • Doo-Yeong Yang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.246-253
    • /
    • 1996
  • In this paper, a problem that occurred in the telegraphist equation established by mode conversion method is solved as analysis tapered transmission line is applied to a waveguide taper. After comparing and analyzing the taper function with variant properties, we select on of taper functions not only that is easily designed but also that have good properties. And then we propose the applicant method to design the waveguide taper and deal with the design of mode transducer between rectangular waveguide and circular waveguide. The measured results of scattering coefficients for the mode transducer fabricated with designed data are agreed well with the theoretical results and the validity of the proposed design and analysis method has been confirmed.

  • PDF

The considerations of the characteristics of Broadband Probe for Near Field Measurements (근접전계 측정을 위한 광대역 프로브의 특성에 대한 고찰)

  • Moon, Jung-Ick
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.565-568
    • /
    • 2007
  • In this paper, we designed and fabricated a broadband probe with a double-ridged waveguide for broadband near-field measurements. An exponentially tapered ridge in the rectangular waveguide and a novel waveguide transition were used for broadband impedance matching. The probe has broadband characteristics and its measured impedance bandwidth is approximately 123% (4.17:1) in the range 12.0-50 GHz for standing wave ratios (SWR) < 3.0. The peak radiation gain range and nominal radar cross-section (RCS) are 5.7-14.3 dBi. The performance of this probe was verified using the measured results and is in good agreement with the simulated results.

  • PDF

A New Resonance Prediction Method of Fabry-Perot Cavity (FPC) Antennas Enclosed with Metallic Side Walls

  • Kim, Dong-Ho;Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • We have proposed a new method to accurately predict the resonance of Fabry-Perot Cavity (FPC) antennas enclosed with conducting side walls. When lateral directions of an FPC antenna are not blocked with metallic walls, the conventional technique is accurate enough to predict the resonance of the FPC antenna. However, when the FPC antenna has side walls, especially for case with only a short distance between the walls, the conventional prediction method yields an inaccurate result, inevitably requiring a tedious, time-consuming tuning process to determine the correct resonant height to provide the maximum antenna gain in a target frequency band using three-dimensional full-wave computer simulations. To solve that problem, we have proposed a new resonance prediction method to provide a more accurate resonant height calculation of FPC antennas by using the well-known resonance behavior of a rectangular resonant cavity. For a more physically insightful explanation of the new prediction formula, we have reinvestigated our proposal using a wave propagation characteristic in a hollow rectangular waveguide, which clearly confirms our approach. By applying the proposed technique to an FPC antenna covered with a partially reflecting superstrate consisting of continuously tapered meander loops, we have proved that our method is very accurate and readily applicable to various types of FPC antennas with lateral walls. Experimental result confirms the validness of our approach.

H-Plane 8-Way Rectangular Waveguide Power Divider Using Y-Junction (Y-Junction을 이용한 H-평면 8-Way 구형 도파관 전력 분배기)

  • Lee, Sang-Heun;Yoon, Ji-Hwan;Yoon, Young-Joong;Kim, Jun-Yeon;Lee, Woo-Sang;Park, Seul-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • This paper proposes a H-plane 8-way rectangular waveguide power divider using Y-junction. A general N-way power divider can be composed of multi-stage T-junctions. However, if the distances of output ports are close, the matching characteristic is not improved by using only T-junctions because of space limitation. In this case, since other types of 3-port junctions should be used to final output stage, Y-junctions are used with T-junctions in this paper. The proposed Y-junction uses the tapered-line impedance transformer and inductive irises to improve impedance matching characteristic. The 8-way power divider using Y-junction is fabricated and measured. The measured return loss and insertion loss from input port to output port are -30.8 dB and -9.3 dB at operating frequency, respectively. The measured maximum phase difference is about $1^{\circ}$. Therefore, the proposed power divider will be useful to apply to various microwave systems, which need to divide the input power equally, such as feed networks for array antennas.

Sectorial Form UWB Antenna with a CPW-fed Uni-Planar (CPW 급전 단일 평면 부채꼴형 UWB 안테나 설계 및 제작)

  • Kim, Nam;Son, Gui-Bum;Park, Sang-Myeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.305-314
    • /
    • 2007
  • In this paper, we suggested a CPW-fed UWB antenna with uni-planar sectoral structure. The area where radiation device face ground is designed to have the shape of tapered slot based on exponential function. We modified a rectangular bow-tie dipole structure antenna and thus formed a multi-resonant mode. From this, we expanded the impedance bandwidth and made a feature satisfying VSWR of less than 2 between $3.1\sim10.6GHz$. The test result showed that the return loss less than -10 dB was met in the full-band UWB system and maximum gain of $0.9\sim3.1dB$ was made with the half-power beamwidth of $40.1\sim89.9^{\circ}$ on XY plane(Theta, $Phi=90^{\circ}$) and the full band. By using CPW-fed structure with no ground on the back of the substrate, the suggested antenna is easy to design and its miniaturization is also possible.