• Title/Summary/Keyword: Taper Tension

Search Result 14, Processing Time 0.033 seconds

Effect of Taper Tension Profiles on Radial Stress of a Wound Roll in Roll-to-roll Winding Process (롤투롤 와인딩 시스템에서 테이퍼 장력과 감김롤 응력분포에 관한 연구)

  • Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2014
  • Winding is an integral operation in almost every roll-to-roll continuous process and center-winding is suitable and general scheme in the winding system. However, the internal stresses within center-wound rolls can cause damage such as buckling, spoking, cinching, etc. It is therefore necessary to analyze the relationship between taper tension in winding section and internal stress distribution within center-wound roll to prevent the winding failure. In this study, an optimal taper tension control method with parabolic taper tension profile for producing high quality wound roll was developed. The new logic was designed from analyzing the winding mechanism by using the stress model in center-wound rolls. The performance of the proposed taper tension profile was verified experimentally.

Taper Tension Logic for Optimization of Residual Stresses in Roll-to-Roll Winding Systems (롤투롤 시스템에서 감김롤 내부 잔류응력 최소화를 위한 테이퍼 장력 설정 기법)

  • Lee, Jongsu;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1011-1016
    • /
    • 2015
  • In a roll-to-roll continuous system, winding is one of the most important processes since it determines the quality of the final manufactured products such as flexible film and printed electronic devices. Since an adequate winding tension can reduce the incidence of the defects that are derived from the inner stress of the wound roll such as starring and telescoping, it is necessary to determine the optimal taper-tension profile. In this study, an algorithm for the setting of an optimal taper-tension profile in consideration of the residual stress in the wound roll is suggested; furthermore, the algorithm was adjusted for the determination of an optimal taper-tension profile regarding the winding process of $10{\mu}m$ polypropylene (PP) film. As a result of the algorithm-generated, optimal taper-tension profile, the residual stress and radial stress in a PP wound roll were decreased to 27.37 % and 40.05 % (mean value), respectively.

FSI(Fluid-Structure Interaction) Analysis for Harmonious Operation of High-Speed Printing Machine

  • Kim, Jin-Ho;Lee, Jae-Woo;Park, Soo-Hyung;Byun, Do-Young;Byun, Yung-Hwan;Lee, Chang-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Proper amount of entrained air and nip force should be also considered to minimize ballooning phenomenon since tight contact between a roller and web is required. In this paper, various web materials, PET(Polyester) and OPP(Oriented Poly Propylene) have been selected and investigated to satisfy high-speed printing requirement. Several web speeds, web tensions, and temperature conditions are imposed on each web materials and the pressure and gap profiles as well as nip force have been calculated. Increase of both the winding roller radius and the incoming wrap angle is considered under proper taper tension at 500 m/min of rewinding roller. By solving coupled Reynolds equation and web deflection equation simultaneously, the fluid-structure interaction process has been developed and is applied to the rewinding roller to investigate the ballooning phenomenon which causes guiding problems in high-speed printing performance conditions. By adjusting the linear taper tension, stress distribution between rewinding webs can be remarkably reduced and stable pressure and gap profile with ignorable ballooning phenomenon have been found.

A Study on the Strength Characteristics of the FRP Bonding Method (FRP 이음방식에 따른 구조강도 특성에 관한 연구)

  • Kim, Kung-Woo;Kang, Dae-Kon;Baek, Myoung-Kee;Park, Jai-Hak
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.778-783
    • /
    • 2015
  • We studied about the strength characteristics of the FRP bonding method due to reduce accident on the oceans and protect life for my people. We test tension and bending strength of butt joint, lap joint, V-scarf joint, X-scarf joint. The result of test, it's pattern is similar both tension and bending strength. Tension strength and bending strength was excellent in order to X-scarf-butt joint-V-scarf-lap joint. The tension strength is the best properties X-scarf showed a 57% strength rate of the basic material, and bending strength showed a 77% strength rate of the basic material. Overall, the X-scarf 12t joint has most excellent properties of tension and bending strength. The lap joint has worst properties of tension and bending strength. We have to test having different over-lay of V-scarf and X-scarf joint each 12t, 16t, 20t. V-scarf of 20t over-lay has excellent character of tension and bending strength. But X-scarf of 12t over-lay has excellent character of tension and bending strength. The results are shown to the contrary. The ship is received a lot of stress. it's hard to compare a direction both actual and test. But we can acknowledge material basic characteristic of strength through tension and bending test. We give the four repair method; butt joint, lap joint, V-scarf joint, X-scarf joint and the reduced ratio in comparison with basic material; In addition give the separated data for V-scarf and X-scarf characteristic of 12t, 16t, 20t overlay length. For our study repair man can select good repair method in his work station.

Effect of different abutment height and convergence taper on the retention of crowns cemented onto implant-supported prostheses (시멘트 유지형 임플란트 지대주의 높이와 축면경사도가 보철물의 유지력에 미치는 영향)

  • Byun, Tae-Hee;Kim, Bu-Sob;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this study was to ascertain the effect of different abutment height and different taper of abutment on retention force of cemented implant-supported prostheses. Test specimens consisted of different abutment height group(3mm, 4mm, 5mm, 6mm, 7mm) and different taper(degrees) abutment group($4^{\circ},\;5^{\circ},\;6^{\circ},\;7^{\circ},\;8^{\circ}$). The surfaces of abutments and crowns were manufactured and finished by automatic lathe(CNC). Luting cement(Tokuso Ionomer) was prepared according to the manufacturer's instruction. And the cylinders were sealed onto the abutments and loaded in compression at 5kg for 10minutes. Excess cement was removed from the abutment-cylinder junction and the specimens were stored at room temparature for 24 hours. Specimens were tested in tension using a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The increase in abutment height result in improvement in retention strength(P<0.05). 2. The increase in taper of abutment result in decrease in retention strength(P<0.05). 3. The decrease in abutment height result in decrease in retention strength, besides has a significantly lower retention strength at 3mm abutment height. 4. The increase in taper of abutment result in decrease in retention strength, besides has a significantly lower retention strength at $7^{\circ}$ abutment.

  • PDF

Ultimate load behaviour of tapered steel plate girders

  • Shanmugam, N.E.;Min, Hu
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.469-486
    • /
    • 2007
  • The paper is concerned with the behavior of tapered steel plate girders, primarily subjected to shear loading; experimental as well as finite element results obtained from the studies are presented in this paper. In the experimental study, 11 large-scale girders, one of uniform section and 10 tapered, were tested to failure and all girders were analysed by finite element method. The results are compared and the accuracy of the finite element modeling established. A parametric study was carried out with thickness of web, loading direction and taper angle as parameters. An analytical model, based on Cardiff model for girders of uniform cross-section, is also proposed in the paper.

EFFECT OF TAPER AND SURFACE AREA OF INNER CROWN ON THE RETENTIVE FORCE OF ELECTROFORMED OUTER CROWN (전기성형술로 제작된 외관의 유지력에 내관의 축면경사도와 표면적이 미치는 영향)

  • Kang Wan-Keun;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.165-173
    • /
    • 2006
  • Purpose: With gold electroforming system fir the double crown, the secondary crown is electroformed directly onto the primary crown. An even thick layer of high precision can be acquired. It is thought that the retention of electroformed outer crown is primarily acquired by the adhesive force (surface tension) through the saliva which is interposed between precisely fitted inner and outer crown. The purpose of this study was to investigate the effect of taper and surface area of inner crown on the retentive force of electroformed outer crown according to the presence of saliva. Materials and methods: 32 titanium inner crowns with cervical diameter of 8 mm and cone angles of 0, 2, 4, 6 degrees, which had same surface area by regulated height, were machined on a lathe. Another 32 titanium inner crowns with cone angles of 0, 2, 4, 6 degrees, which had doubled surface area by increased cervical diameter. were fabricated. Eight specimens of each group, for a total of 64 titanium inner crowns, were prepared. The electroformed outer crowns were fabricated directly on the inner crowns by using electroforming machine(GAMMAT free, Gramm Technik, Germany). The tertiary frameworks were waxed-up on the electroformed outer crown and cast using nonprecious alloy($Rexillium^(R)III,\;Jeneric^(R)/Pentronh^(R)$ Inc., USA). The cast metal frameworks were sandblasted with alubimium oxides and cemented using resin cement(Superbond C&B, Sun Medical Co., Japan) over the electroformed copings of each specimen. Then, artificial saliva($Taliva^(R)$, Halim Pharm. Co., Korea) was sprayed between the inner and outer crown, and they were connected under 5 kg force. The retentive force was measured by the universal testing machine(Tinius Olsen 1000, Tinius Olsen, USA) with a cross-head speed of 66.67 mm/sec. The direction of cross-head travel was exactly aligned with the path of removal of the respective specimens. This measurement procedures for retentive force of electroformed outer crown with artificial saliva were repeated in the same way without presence of artificial saliva. Results and Conclusion: The following conclusions were drawn: 1. The retentive force of electroformed outer crown was decreased according to increased taper of inner crown(P<.05). 2. The retentive force of electroformed outer crown showed no significant differences according to surface area and the presence of artificial saliva(P>.05).