• Title/Summary/Keyword: Tank pressure

Search Result 839, Processing Time 0.032 seconds

Wave Pressure and Wave Height Distribution around Seawall Structure Constructed by an Array of TSP Circular Piles (TSP 원형 파일 배열로 조성된 호안 구조물에 작용하는 파압 및 파고 분포)

  • Hyun-Ju Han;Woo-Sik Kim;Il-Hyoung Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.129-137
    • /
    • 2024
  • An analytic solution for the interaction between an array of circular piles made by joining trapezoid steel pipes (TSP) and waves was obtained using an eigenfunction expansion method. First, an analytic model for the wave scattering of multiple piles fixed at arbitrary positions was derived, and then a simplified model was obtained assuming that an infinite array of identical piles were deployed perpendicular to the propagating direc- tion of incident waves. A regular wave experiment was conducted using an experimental model with a scale ratio of 1/100 in a two-dimensional wave tank to verify the analytic solutions. The analytic results and experimental results were qualitatively consistent with each other. Using a developed analytic model, we examined the wave force on the multiple piles and the wave deformation in front of the arrayed piles. The period for the installation is greatly reduced as the TSP pile can be prefabricated in a factory. In particular, it is possible to install at the soft seabed. A seawall structure using arrayed TSP piles will be an ideal complement for a concrete seawall in future.

The hydrodynamic characteristics of the canvas kite - 2. The characteristics of the triangular canvas kite - (캔버스 카이트의 유체역학적 특성에 관한 연구 - 2. 삼각형 캔버스 카이트의 특성 -)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Lee, Ju-Hee;Shin, Jung-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the triangular plate, $C_{Lmax}$ was produced as 1.26${\sim}$1.32 with A${\leq}$1 and 38$^{\circ}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$, $C_L$ was around 0.85. Given the inverted triangular plate, $C_{Lmax}$ was 1.46${\sim}$1.56 with A${\leq}$1 and 36$^{\circ}$B${\leq}$38$^{\circ}$. And When A${\geq}$1.5 and 22$^{\circ}$B${\leq}$26$^{\circ}$, $C_{Lmax}$ was 1.05${\sim}$1.21. Given the triangular kite, $C_{Lmax}$ was produced as 1.67${\sim}$1.77 with A${\leq}$1 and 46$^{\circ}$B${\leq}$48$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$B${\leq}$50$^{\circ}$, $C_L$ was around 1.10. Given the inverted triangular kite, $C_{Lmax}$ was 1.44${\sim}$1.68 with A${\leq}$1 and 28$^{\circ}$B${\leq}$32$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$B${\leq}$24$^{\circ}$, $C_{Lmax}$ was 1.03${\sim}$1.18. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a very gradual decrease or no change in the value of $C_L$. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2. For a model with A=1, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. And the tendency of $C_L$ didn't change dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was changed very small as 0.75${\sim}$1.22 with 20$^{\circ}$B${\leq}$50$^{\circ}$. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the triangular model. There was no considerable change in the models with 20$^{\circ}$B${\leq}$50$^{\circ}$. 3. The inverted model's $C_L$ as a function of increase of B reached the maximum rapidly, then decreased gradually compared to the non-inverted models. Others were decreased dramatically. 4. The action point of dynamic pressure in accordance with the attack angle was close to the rear area of the model with small attack angle, and with large attack angle, the action point was close to the front part of the model. 5. There was camber vertex in the position in which the fluid pressure was generated, and the triangular canvas had large value of camber vertex when the aspect ratio was high, while the inverted triangular canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the triangular canvas had larger one when the attack angle was high, while the inverted triangluar canvas was versa.

Studies on Raw Silk Cohesion for Promotion (생사의 포합향상에 관한 연구)

  • 최병희;김병호;원성희
    • Journal of Sericultural and Entomological Science
    • /
    • v.15 no.1
    • /
    • pp.37-48
    • /
    • 1973
  • The purpose of this studies is to improve the cohesion of raw silk through various analyses on cocoon drying, cooking, reeling, re-reeling, and on the properties of water. Also we investigated the correlation between silk testing items which we have reached to the following results. 1. Drying of cocoon When cocoons were slowly dried with 100$^{\circ}C$, the results of cohesion became much better. On the other hand, the results were considerably decreased in case the temperature with 115$^{\circ}C$. 2. Cooking of cocoon In case of the cooking of cocoon, we found that the result of cohesion was best with incomplete cooking, that of the control was next, while in over cooking, the results were very low. Also the results of cohesion were much better when using the method of over cooking with sericin arrestive agent than that of incomplete cooking with sericin agglutinating agent. 3. Reeling of cocoon A) When the temperature of reeling bath was 25-45$^{\circ}C$, the results of cohesion test were much better, but at the temperature below 25$^{\circ}C$ or above 45$^{\circ}C$, the results became worse. B) With out the process of croissieur, the results of cohesion were too bad, but in case of croissieur more than 1cm, cohesion became better rapidly. Further more, we understood that the results of cohesion were improving slightly with longer length of croissieur. C) When the velocity of reeling was increased, the results of cohesion also improved. The best results were shown when reeling velocity was 180-220 r.p.m. But when the velocity was increased more than 220 r.p.m., the results of cohesion got worse more or less. D) When the temperature of the drying pipe in reeling machine was raised, the results of cohesion also showed a tendency to improve. 4. Re-reeling A) We could net reach a conclusion as to have correlation between the number of dipping repeat in vacuum tank and the results of cohesion before re-reeling process. B) When we used Seracol 500 as an agglutination protective agent with l/1000 to l/2000 of water, the results of cohesion test were better. C) When we used Pearl-lite as an agglutination protective agent with 1/1000 to 1/2000 of water, the results of cohesion were considerably better. D) We gained tile best results when used Cohesion Improving Chemical, A-80, with 500-1500 times diluted. 1) Results of cohesion was improved when humidity was low or temperature was high in the rereeling machine. 5. Filature water A) The water pH near the isoelectric point of protein showed the best cohesion, but the farther water pH, the worser results were obtained. B) With the increasing of M-alkalinity in filature water, the results of cohesion were worse. Above all, we understood the tendency of the results of cohesion get worse when the M-alkalinity is increased above 200 ppm. C) By increasing the total hardness of the filature water, it improved the results of cohesion. Especially, when the total hardness was above 300ppm, the results were extremely high. 6. Effects combination of each results A) The result of effects combination in filature processes with the obtained best conditions was distinctively improved. But the results could not reach in mathematicaly double effect. When reelied under worse conditions, the results of cohesion test were too bad. There was "effect limit" for the promotion. B) Generally the results of cohesion were bad when the filature conditions(the temperature, pressure and the properties of water, etc) are processed as sericin loss to be high. On the other hand, the results were very good when lower sericin loss was controlled in filature conditions. C) When filature conditions such as reeling velocity and croissieur length provide pysical cohesion ability and when raw silk dry fast during reeling and re-reeling, we found the result of cohesion was better. 7. Correlation of silk testing items. A) A negative correlation exists between the results of cohesion test and cleanness defect. Another word, the result of cohesion test was found to be worse as cleanness defect increased. B) In cleanness, cohesion has negative correlation against the number of slugs, but we could not find any correlation against long loops, loose ends. C) Cohesion has negative correlation against average neatness and low neatness defect. The better the results of neatness respectively, the better the results of cohesion found. D) There is no correlation between tenacity and the results of cohesion test, but there was high positive correlation between the results of elongation and those of cohesion test. The more elongation, the better the results of cohesion was found.

  • PDF

Studies on the Processing and Management Forms of Filatures (우리나라 제사공장의 공정 관리실태에 관한 조사연구)

  • 송기언;이인전
    • Journal of Sericultural and Entomological Science
    • /
    • no.12
    • /
    • pp.37-45
    • /
    • 1970
  • The processing management forms of our country's filature factories in 1969 are summarized as follows. (1) About 80% of total cocoon collection is made within 5 days involving peak day, and 10% of cocoon collection is finished until 3 days before and after the peak day, (2) About 92% of alive cocoons transported on unpaved road, and about 40% of the cocoons purchased by all factories are loaded on trucks from common selling station which is far beyond 40km, therefore a new packing system of alive cocoons to drop the damage of cocoon qualities, should be taken. (3) 22% of all factories in our. country have only low-temperature cocoon drying machine. Therefore the installment of hot-air cocoon drying machine is required urgently. (4) In view of cocoon qualities in our country, the grouping method of cocoon for reeling. taken by about 50% of the factories at percent, which classify cocoons for reeling as high group (1,2,3,4 grades) and low group(5,6 grades), will have to be replaced by the method tat classify them high group (1,2 grades) middle group (3,4 grades), low group (5,6 grades). (5) The .ratio of cocoon assorting stood about 10% in multi-ends reeling, about 15% in automatic reeling, conclusively, the ratio of cocoon assorting for automatic reeling was higher tan that for multi-ends reeling. One person's ability for a day in cocoon assorting reaches to about 80-100kg. (6) Cocoon cooking condition requires the increase of the cooking time, the pressure and temperature used to be prolonged as much as the qualities of cocoons are material cocoon ior automatic and double cocoon machines are treated uncompletely. (7) Automatic silk reeling is being performed at 1-2$^{\circ}C$ lower in reeling water temperature and operated at about twice velocity. (8) The temperature and humidity of rereeling room stood at 25$^{\circ}C$, 67.2% R.H and 32.3$^{\circ}C$, 51.9% R.H of rereeling machine are showed, Average rereeling velocity is 233m/min and large reefs charged for one person are 7.5 reels and form of skein used in all factories is double skein. (9) About 73% of water sources for filature used under-earth water. About 48% of all filature factories in our country have not yet water purifying equipments. Installation of the equipment for these factories seems to be urgent, (10) Denier .balance, sizing reel, seriplane, are being used in most factories as self-inspection apparatus. (11) More than 90% of the factories use the vacum tank in rereeling process and about 20% of them use it in cocoon cooing process (12) Only 21% of the factories use chemicals in filature process. About all them use "Seracol 100" in cocoon cooking process and "Seracol 500" in rereeling process, (13) Above survey results explain each all factories show large difference in the processing management. Therefore, it is believed that intercommunication through seminar or technical exchange will contribute to the production evaluation of cocoon in our filature industry.

  • PDF

Flexural Properties according to Change of Polymerization Temperature of Autopolymerized Resin for Orthodontic (치과 교정용 자가중합형 Resin의 중합 온도 변화에 따른 굽힘 특성)

  • Lee, Gyu Sun
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For this experiment, specimen was manufactured by injecting polymer and monomer into silicon mold with volume ratio of 2.5:1 based on ISO 20795-2 so that average thickness, width and length of specimen would be maintained as 3.3 mm, 10.0 mm and 65.0 mm, respectively depending on spray on technique. Specimen was divided into 3 groups ($25^{\circ}C$, $40^{\circ}C$, $70^{\circ}C$) depending on polymerization temperature and 10 specimen was manufactured for each group and it was polymerized in water tank of ${\pm}1^{\circ}C$ under the setting condition of polymerization time of 15 minutes and pressure of 3 bar. After keeping specimen in distilled water of $37^{\circ}C$ for over 48 hours before experiment, flexural strength (FS) and elasticity modulus (EM) of specimen being tested by using Intron (3344; Instron; Instron). SPSS ver. 16.0 was used for analysis and post-hoc test of Scheffe was performed after using one-way ANOVA. When comparing mean value of FS of resin for orthodontics, it was represented in the range of 71.500 MPa for $25^{\circ}C$ group, 74.920 MPa for $40^{\circ}C$ group and 76.880 MPa for $70^{\circ}C$ group and difference was shown in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group but such difference was not significant statistically (p=0.052). Result of EM mean value of resin for orthodontics was more polymerization temperature was high, the more was significant difference represented in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group (p<0.039).

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

The hydrodynamic characteristics of the canvas kite - 1. The characteristics of the rectangular, trapezoid canvas kite - (캔버스 카이트의 유체역학적 특성에 관한 연구 - 1. 사각형 캔버스 카이트의 특성 -)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Lee, Ju-Hee;Shin, Jung-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.196-205
    • /
    • 2004
  • As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the rectangular plate, $C_{Lmax}$ was produced as 1.46${\sim}$1.54 with A${\leq}$1 and 40$^{\circ}$${\leq}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$22$^{\circ}$, $C_{Lmax}$ was 10.7${\sim}$1.11. Given the rectangular canvas, $C_{Lmax}$ was 1.75${\sim}$1.91 with A${\leq}$1 and 32$^{\circ}$${\leq}$B${\leq}$40$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$${\leq}$B${\leq}$22$^{\circ}$, $C_{Lmax}$ was 1.24${\sim}$1.40. Given the trapezoid kite, $C_{Lmax}$ was produced as 1.65${\sim}$1.89 with A${\leq}$1.5 and 34$^{\circ}$${\leq}$B${\leq}$44$^{\circ}$. And when A=2 and B=14${\sim}$48, $C_L$ was around 1. Given the inverted trapezoid kite, $C_{Lmax}$ was 1.57${\sim}$1.74 with A${\leq}$1.5 and 24$^{\circ}$${\leq}$B${\leq}$36$^{\circ}$. And when A=2, $C_{Lmax}$ was 1.21 with B=18$^{\circ}$. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a gradual decrease in the value of $C_L$ and in particular, the rectangular kite showed a more rapid decrease. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2 but the tendency was a more rapid decrease than those of the previous models. For a model with A=1, and increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Soon after the tendency of $C_L$ decreased dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was various. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the rectangular and trapezoid model. There was no considerable change in the models with 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$. 3. The tendency of kite model's $C_L$ in accordance with increase of B was increased rapidly than plate models until $C_L$ has reached the maximum. Then $C_L$ in the kite model was decreased dramatically but in the plate model was decreased gradually. The value of $C_{Lmax}$ in the kite model was higher than that of the plate model, and the kite model's attack angel at $C_{Lmax}$ was smaller than the plate model's. 4. In the relationship between aspect ratio and lift force, the attack angle which had the maximum lift coefficient was large at the small aspect ratio models, At the large aspect ratio models, the attack angle was small. 5. There was camber vertex in the position in which the fluid pressure was generated, and the rectangular & trapezoid canvas had larger value of camber vertex when the aspect ratio was high, while the inverted trapezoid canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the rectangular & trapezoid canvas had larger one when the attack angle was high.

A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley (만경강유역의 개간과정과 취락형성발달에 관한 연구)

  • NamGoong, Bong
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.2
    • /
    • pp.37-87
    • /
    • 1997
  • As a results of researches on the cultivation processes and settlement developments on the Mangyoung river valley as a whole could be have four 'Space-Time Continuity' through a [Origin-Destination] theory model. On a initial phases of cultivation, the cultivation process has been begun at mountain slopes and tributory plains in upper part of river-basin from Koryo Dynasty to early Chosun Dynasty. At first, indigenous peasants burned forests on the mountain slopes for making 'dryfield' for a cereal crops. Following population increase more stable food supply is necessary facets of life inducing a change production method into a 'wetfield' in tributory plains matching the population increase. First sedentary agriculture maybe initiated at this mountain slopes and tributory plains on upper part of river basin through a burning cultivation methods. Mountain slopes and tributory plains are become a Origin area in cultivation processes. It expanded from up to down through the valleys with 'a bits of land' fashion in a steady pace like a terraced fields expanded with bit by bit of land to downward. They expanded their land to the middle part of river basin in mid period of Chosun Dynasty with dike construction techniques on the river bank. Lower part of river cultivated with embankment building techniques in 1920s and then naturally expanded to the tidal marshes on the estuaries and river inlets of coastal areas. 'Pioneer fringes' are consolidated at there in modern times. Changes in landscapes are appeared it's own characters with each periods of time. Followings are results of study through the Mangyoung river valley as a whole. (1) Mountain slopes and tributory plains on the upper part of river are cultivated 'dryfields' by indigenous peasants with Burning cultivation methods at first and developed sedentary settlements at the edges of mountain slopes and on the river terrace near the fields. They formed a kind of 'periphery-located cluster type' of settlement. This type of settlement are become a prominant type in upper part of river basin. 'Dryfields' has been changed into a 'wetfields' at the narrow tributory plains by increasing population pressure in later time. These wetfields are supplied water by Weir and Ponds Irrigation System(제언수리방법). Streams on the tributory plains has been attracted wetfields besides of it and formed a [water+land] complex on it. 'Wetfields' are expanded from up to downward with a terraced land pattern(adder like pattern, 붕전) according to the gradient of valley. These periphery located settlements are formed a intimate ecological linkage with several sets of surroundings. Inner villages are expanded to Outer villages according to the expansion of arable lands into downward. (2) Mountain slopes and tributory plains expanded its territory to the alluvial deposited plains on the middle part of river valley with a urgent need of new land by population increase. This part of alluvial plains are cultivated mainly in mid period of Chosun Dynasty. Irrigation methods are changed into a Dike Construction Irrigation method(천방수리방법) for the control of floods. It has a trend to change the subjectives of cultivation from community-oriented one who constructed Bochang along tributories making rice paddies to local government authorities who could be gather large sums of capitals, techniques and labours for the big dike construction affairs. Settlements are advanced in the midst of plains avoiding friction of distances and formed a 'Centrallocated cluster type' of settlements. There occured a hierarchical structures of settlements in ranks and sizes according merits of water supply and transportation convenience at the broad plains. Big towns are developed at there. It strengthened a more prominant [water+land] complex along the canals. Ecological linkages between settlements and surroundings are shaded out into a tiny one in this area. (3) It is very necessary to get a modern technology of flood control at the rivers that have a large volume of water and broad width. The alluvial plains are remained in a wilderness phase until a technical level reached a large artificial levee construction ability that could protect the arable land from flood. Until that time on most of alluvial land at the lower part of river are remained a wilderness of overgrown with reeds in lacks of techniques to build a large-scale artificial levee along the riverbank. Cultivation processes are progressed in a large scale one by Japanese agricultural companies with [River Rennovation Project] of central government in 1920s. Large scale artificial levees are constructed along the riverbank. Subjectives of cultivation are changed from Korean peasants to Japanese agricultural companies and Korean peasants fell down as a tenant in a colonial situation of that time in Korea. They could not have any voices in planning of spatial structure and decreased their role in planning. Newly cultivated lands are reflected company's intensions, objectives and perspectives for achieving their goals for the sake of colonial power. Newly cultivated lands are planned into a regular Rectangular Block settings of rice paddies and implanted a large scale Bureaucratic-oriented Irrigation System on the cultivated plains. Every settlements are located in the midst of rice paddies with a Central located Cluster type of settlements. [water+land] complex along the canal system are more strengthened. Cultivated space has a characters of [I-IT] landscapes. (4) Artificial levees are connected into a coastal emnankment for a reclamation of broad tidal marshes on the estuaries and inlets of rivers in the colonial times. Subjectives of reclamation are enlarged into a big agricultural companies that could be acted a role as a big cultivator. After that time on most of reclamation project of tidal marshes are controlled by these agricultural companies formed by mostly Japanese capitalists. Reclaimed lands on the estuaries and river inlets are under hands of agricultural companies and all the spatial structures are formed by their intensions, objectives and perspectives. They constructed a Unit Farming Area for the sake of companies. Spatial structures are planned in a regular one with broad arable land for the rice production of rectangular blocks, regular canal systems and tank reservoir for the irrigation water supply into reclaimed lands. There developed a 'Central-located linear type' of settlements in midst of reclaimed land. These settlements are settled in a detail program upon this newly reclaimed land at once with a master plan and they have planned patterns in their distribution, building materials, location, and form. Ecological linkage between Newly settled settlemrnts and its surroundings are lost its colours and became a more artificial one by human-centred environment. [I-IT] landscapes are become more prominant. This region is a destination area of [Origin-Destination] theory model and formed a 'Pioneer Fringe'. It is a kind of pioneer front that could advance or retreat discontinously by physical conditions and socio-cultural conditions of that region.

  • PDF