Browse > Article
http://dx.doi.org/10.3796/KSFT.2004.40.3.206

The hydrodynamic characteristics of the canvas kite - 2. The characteristics of the triangular canvas kite -  

Bae, Bong-Seong (National Fisheries Research and Development Institute)
Bae, Jae-Hyun (National Fisheries Research and Development Institute)
An, Heui-Chun (National Fisheries Research and Development Institute)
Lee, Ju-Hee (Pukyong National University)
Shin, Jung-Wook (Pukyong National University)
Publication Information
Journal of the Korean Society of Fisheries and Ocean Technology / v.40, no.3, 2004 , pp. 206-213 More about this Journal
Abstract
As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the triangular plate, $C_{Lmax}$ was produced as 1.26${\sim}$1.32 with A${\leq}$1 and 38$^{\circ}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$, $C_L$ was around 0.85. Given the inverted triangular plate, $C_{Lmax}$ was 1.46${\sim}$1.56 with A${\leq}$1 and 36$^{\circ}$B${\leq}$38$^{\circ}$. And When A${\geq}$1.5 and 22$^{\circ}$B${\leq}$26$^{\circ}$, $C_{Lmax}$ was 1.05${\sim}$1.21. Given the triangular kite, $C_{Lmax}$ was produced as 1.67${\sim}$1.77 with A${\leq}$1 and 46$^{\circ}$B${\leq}$48$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$B${\leq}$50$^{\circ}$, $C_L$ was around 1.10. Given the inverted triangular kite, $C_{Lmax}$ was 1.44${\sim}$1.68 with A${\leq}$1 and 28$^{\circ}$B${\leq}$32$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$B${\leq}$24$^{\circ}$, $C_{Lmax}$ was 1.03${\sim}$1.18. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a very gradual decrease or no change in the value of $C_L$. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2. For a model with A=1, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. And the tendency of $C_L$ didn't change dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was changed very small as 0.75${\sim}$1.22 with 20$^{\circ}$B${\leq}$50$^{\circ}$. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the triangular model. There was no considerable change in the models with 20$^{\circ}$B${\leq}$50$^{\circ}$. 3. The inverted model's $C_L$ as a function of increase of B reached the maximum rapidly, then decreased gradually compared to the non-inverted models. Others were decreased dramatically. 4. The action point of dynamic pressure in accordance with the attack angle was close to the rear area of the model with small attack angle, and with large attack angle, the action point was close to the front part of the model. 5. There was camber vertex in the position in which the fluid pressure was generated, and the triangular canvas had large value of camber vertex when the aspect ratio was high, while the inverted triangular canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the triangular canvas had larger one when the attack angle was high, while the inverted triangluar canvas was versa.
Keywords
canvas kite; plate; trawl; aspect ratio; attack angle; lift coefficient;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Catasta, L. (1959) : Studies to improve the efficiency of otter boards and trawl floats, Modern fishing gear of the world, 251-253
2 Edwards, M. L. (1987) : Want more headline height and less drag? Go fly a kite. NATL.-FISHERMAN, 68(8), 38·-41
3 Lange, K. (1989) : Design and operation of flexible sail kites, ICES council meeting collected papers, 7p
4 光沢 崇, 藤森 康澄, 淸水 晋, 梨本 勝昭, 三浦 汀介(1996) : キャンバスカイトを用いた資源調査用中層トロ-ル網, 日本水産學會誌, 62(2), 254-261
5 朴倉斗(1994) : オッタ-ボ-ドの流休特性に關する硏究, 東京水産大學, 水産學博士 學位論文
6 石崎 宗周, 不破 茂(1999) : 中層トロ-ル用キャンバスカイトの形狀と流體特性, 日本水産學會誌, 65(3), 400-407
7 松田 岐, 朝 夫祥, 小池 篤(1988) : キャソバス式中層トロ-ル網の靜的特性, 日本水産學會誌, 54(10), 1783-1788
8 幸鍾根, 李珠熙, 吳熙國(1988) : 외끌이 機船底引網의 展開性能에 관한模形實驗, 韓國流業技術學會誌, 24(1), 22-29
9 유제범, 이주희, 이춘우, 권병국, 김정문(2003) : 無浮子 쌍끌이 中層網 어구어법의 개발 III, 韓國漁業技術學會誌, 39(3), 197~210
10 松田 皎, 胡 夫祥, 石沢 職(1989) : キャンバス製擴網裝置, ゥィソグパラカィトの流體特性, 日本水産學會誌, 55(11), 1927-1934
11 井上 喜洋, 木下 弘實(2002) : ソフト·トロ-ル漁具開發, 水工硏技報, vol. 24, 15-26
12 朝 夫祥, 松全 皎, 小池 篤(1989) : 模型實驗によるキャンバス式とオッタ-式の中層トロ一ル綱力學的特性の比較, 日本ホ産學營誌, 55(5), 785~790
13 權炳國(1993) : 展開板의 流體力學的 特性에 관한 硏究, 부산수산대학교, 水産學博士 學位論文
14 권병국 (1995) : 쌍끌이중층망의 전개성능 향상을 위한 모형실험. 한국어업기술학회지, 31(4), 340-349