• Title/Summary/Keyword: Tank

Search Result 5,522, Processing Time 0.033 seconds

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

Seismic Fragility Analysis of Base Isolated Liquid Storage Tank (면진 유체 저장 탱크의 지진취약도 분석)

  • Ahn, Sung-Moon;Choi, In-Kil;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.453-460
    • /
    • 2005
  • In this study, the seismic fragility analysis of a base isolated condensate storage tank installed in the nuclear power plant. The condensate storage tank is safety related structure in a nuclear power plant. The failure of this tank affect significantly to the core damage frequency of the nuclear power plants. The seismic analysis of the liquid storage tank was performed by the simple calculation method and the dynamic time storage analysis method. The convective and impulsive fluid mass is modeled as added masses proposed by several researchers. To evaluate the effectiveness of the isolation system, the comparison of HCLPF and core damage frequencies in non-isolated and isolated cases are carried out. It can be found from the results that the seismic isolation system increases the seismic capacity of a condensate storage tank and decreases the core damage frequency significantly.

  • PDF

An Empirical Study for the Safe and Effective Operations in Membrane LNG Ships focused on the Tank Cool Down

  • Gim, S.G.;Kim, S.W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.566-572
    • /
    • 2005
  • The most crucial factor in membrane LNG ships to ensure sage operations, is how to effectively control tank pressure at the time of excessive generation of boil off gas (BOG). When the ships carry out tank cool down with her retaining heel prior to arrival at loading port, the vessel encounters the critical situation of excessive BOG and high tank pressure that can lead to high degree of risk. This is to provide one of the best ways to secure safe and effective LNG ship operations focusing on the detailed methods of tank cool down to achieve ATR(Arrival Temperature requirement) without building up high tank pressure and excessive BOG and calculating the appropriate heel quantity to be unutilized for tank cool down and fuel during ballast voyage.

  • PDF

A Trade Study of the Top Attack Smart Tank Ammunition (상부공격 전차 지능탄에 대한 상쇄연구)

  • Hong, Jong Tai;Choi, Sang Kyung;Kim, Ki Pyo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • Advanced military nations have developed anti-tank smart munitions to maximize the effectiveness of the tank combat. In this paper we introduced new munition models (KSTAM) for arrack on the top of the tank and analyzed those operation research. To understand the adaptation to the future tank munition we have performed a trade-off study using the proposed models for smart tank munitions which have been developed or are being developed in advanced nations.

  • PDF

Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank (사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

Flow Characteristics of Floating Roof Tank with Varying the Number of Operation and Angle (믹서의 가동 수 및 각도 변화에 따른 유동형 지붕 탱크의 유동특성)

  • Kim, Noh-Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2015
  • In this study, there are 6 mixers that are installed in a 600,000 barrel tank. We identified internal flow characteristics of floating roof tank with varying the number of operation from 4 to 6 because mixer is a variable that influence flow characteristics of the tank. And while varying an angle from Right $60^{\circ}$, Right $30^{\circ}$, Left $30^{\circ}$ to Left $60^{\circ}$, we identified internal flow characteristics of the tank. As a result, maximum velocity of flow was 0.02m/s stationarily when we changed the number of operation from 4 to 6. Maximum velocity of flow by change of an angle was from 0.42m/s to 0.47m/s. Therefore, we identified that these factors don't have a great influence on internal flow characteristics of a tank by investigating results with varying the number of operation and an angle.

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Numerical Simulation of Fast Filling of a Hydrogen Tank

  • Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.353-358
    • /
    • 2010
  • High pressure gas is a widely used storage mode for hydrogen fuel. A typical hydrogen tank that is charged with hydrogen gas can function as a hydrogen supply source in a large number of applications. The filling process of a high-pressure hydrogen tank should be reasonably short. However, when the fill time is short, the maximum temperature in the tank increases. Therefore the process should be designed in such a way to avoid high temperatures in the tank because of safety reasons. The paper simulates the fast filling process of hydrogen tanks using Computational Fluid Dynamics method. The local temperature distribution in the tank is obtained. Results obtained are compared with available experimental data. Further work is going on to improve the accuracy of the calculations.

  • PDF

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.

A Study on the Durability Estimation of Vehicle Fuel Tank (차량용 연료탱크의 내구도 평가에 관한 연구)

  • Hong, Min-Sung;Cho, Eun-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.614-620
    • /
    • 2009
  • A fuel tank of a vehicle is an important part due to its flammable contents ant its importance during crash conditions. Therefore, the fuel tank's design should be assessed for durability and robustness to ensure safety during the early development phase. Previously, evaluation for the durability was done by testing in physical driving conditions which could only be done after the completion of the vehicle. Computation simulation is a more effective method to evaluate the strength and durability of the fuel tank during the early stage. In this paper, two outstanding computational simulation methods are studied. One evaluates PV cycle fatigue due to build up pressure in the fuel tank and the other evaluates the PSD vibration fatigue from modal characteristics. The results show that computational methods agree with physical tests and are thus suitable to analyze the strength and durability of the fuel tank at early development phase.

  • PDF