• Title/Summary/Keyword: Tangor(Citrus kiyomi ${\times}$ C. ponkan)

Search Result 7, Processing Time 0.026 seconds

Changes in Fruit Quality of Hallabong Tangor (Citrus kiyomi ${\times}$ ponkan) by Film Packaging during Storage (포장재 처리에 따른 한라봉 감귤의 저장 중 품질변화)

  • Lee, Sang-Hyup;Kim, Jong-Hyun;Jeong, Hee-Chan;Koh, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • We investigated changes in fruit quality of Hallabong tangor (Citrus Kiyomi ${\times}$ ponkan) that was packaged with Si+CaO and LDPE film. The flesh ratio during storage was 74.33% (${\pm}3.66$) to 81.56% (${\pm}1.38$). Firmness of M16A, a variant of Hallabong tangor, was higher 100g-force than that of Hallabong tangor, changes of firmness was not shown among film packages. A fruit juice was $12-14^{\circ}$Brix, and this increased somewhat at the end of storage without film packaging. The titratable acidity of the M16A variety was 0.2% lower than that of the Hallabong tangor. Hallabong and M16A maintained freshness and taste for 120 and 60 days, respectively. The level of reducing sugars in the Hallabong tangor was 1% higher than that of the M16A variety. Reducing sugars increased at room temperature storage without film packaging. Total sugar content was 9.19% (${\pm}2.03$) to 12.78% (${\pm}0.75$). The content of vitamin C declined slowly after 105 days of storage. In conclusion, storage of Hallabong tangor with film packaging coated with Si+CaO was effective for maintaining freshness and quality.

Anti-Obesity Effects of Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) Peel Extracts in 3T3-L1 Adipocytes (제주산 한라봉 과피 추출물의 지방세포에서의 항비만 효과)

  • Lim, Heejin;Seo, Jieun;Chang, Yun-Hee;Han, Bok-Kyung;Jeong, Jung-Ky;Park, Su-Beom;Choi, Hyuk-Joon;Hwang, Jinah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1688-1694
    • /
    • 2014
  • Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) is a Citrus species with a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated the anti-obesity effects of Hallabong Tangor peel extracts before (HLB) and after (HLB-C) bioconversion with cytolase based on modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 adipocytes. Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycone forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with 0.5 mg/mL of Sinetrol (a positive control), HLB or HLB-C. Adipocyte differentiation was inhibited in both citrus groups, but not in control and Sinetriol groups. HLB and HLB-C tended to reduce insulin-induced mRNA levels of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and sterol regulatory element-binding protein 1c (SREBP1c). Compared to the control and Sinetrol groups, HLB and HLB-C markedly suppressed insulin-induced protein expression of $C/EBP{\alpha}$ and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The HLB and Sinetrol groups, but not HLB-C group, significantly increased adipolytic activity with higher release of free glycerol compared to the control group in differentiated 3T3-L1 adipocytes. These results suggest that bio-conversion of Hallabong Tangor peel extracts with cytolase increases aglycone flavonoids. Irrespective of bioconversion, both Hallabong Tangor peel extracts exert anti-obesity effects that may contribute to prevention of obesity through inhibition of adipocyte differentiation or induction of adipolytic activity.

Bioconverted Jeju Hallabong tangor (Citrus kiyomi × ponkan) peel extracts by cytolase enhance antioxidant and anti-inflammatory capacity in RAW 264.7 cells

  • Chang, Yun-Hee;Seo, Jieun;Song, Eunju;Choi, Hyuk-Joon;Shim, Eugene;Lee, Okhee;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Citrus and its peels have been used in Asian folk medicine due to abundant flavonoids and usage of citrus peels, which are byproducts from juice and/or jam processing, may be a good strategy. Therefore, the aim of this study was to examine antioxidant and anti-inflammatory effects of bioconversion of Jeju Hallabong tangor (Citrus kiyomi ${\times}$ ponkan; CKP) peels with cytolase (CKP-C) in RAW 264.7 cells. MATERIALS/METHODS: Glycosides of CKP were converted into aglycosides with cytolase treatment. RAW 264.7 cells were pre-treated with 0, 100, or $200{\mu}g/ml$ of citrus peel extracts for 4 h, followed by stimulation with $1{\mu}g/ml$ lipopolysaccharide (LPS) for 8 h. Cell viability, DPPH radical scavenging activity, nitric oxide (NO), and prostagladin $E_2$ ($PGE_2$) production were examined. Real time-PCR and western immunoblotting assay were performed for detection of mRNA and/or protein expression of pro-inflammatory mediators and cytokines, respectively. RESULTS: HPLC analysis showed that treatment of CKP with cytolase resulted in decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycoside forms (naringenin and hesperetin). DPPH scavenging activities were observed in a dose-dependent manner for all of the citrus peel extracts and CKP-C was more potent than intact CKP. All of the citrus peel extracts decreased NO production by inducible nitric oxide synthase (iNOS) activity and $PGE_2$ production by COX-2. Higher dose of CKP and all CKP-C groups significantly decreased mRNA and protein expression of LPS-stimulated iNOS. Only $200{\mu}g/ml$ of CKP-C markedly decreased mRNA and protein expression of cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Both 100 and $200{\mu}g/ml$ of CKP-C notably inhibited mRNA levels of $interleukin-1{\beta}$ ($IL-1{\beta}$) and IL-6, whereas $200{\mu}g/ml$ CKP-C significantly inhibited mRNA levels of $TNF-{\alpha}$. CONCLUSIONS: This result suggests that bioconversion of citrus peels with cytolase may enrich aglycoside flavanones of citrus peels and provide more potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by increasing radical scavenging activity and suppressing pro-inflammatory mediators and cytokines.

Physicochemical Properties of Hallabong Tangor(Citrus Kiyomi ${\times}$ ponkan) Cultivated with Heating (가온재배한 한라봉 감귤의 성분분석)

  • Kim, Hwa-Sun;Lee, Sang-Hyup;Koh, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.611-615
    • /
    • 2006
  • Physicochemical properties of Hallabong Tangor(Citrus Kiyomi ${\times}$ ponkan) cultivated in Heated greenhouse were investigated. Moisture contents of Hallabong and M16A (a variant species of Hallabong) were 87.42% and 88.12% total sugar were 8.01% and 7.81% and acid content were 1.09% and 0.99% respectively. Vitamin C content of Hallabong was 72.01 mg/100 g that was higher than Citrus unshiu. Potassium content of M16A was 938.33 mg/kg, while Hallabong was 1369.33 mg/kg. The contents of inorganic element in a decreasing order were K > Ca > P > Mg > Na in Hallabong, and K > P > Ca > Mg > Na in Ml6A. Sucrose in Hallabong and M16A were 3.60% and 4.36%, respectively, which is half of total free sugars. Fructose and glucose Hallabong and M16A were 2.22% and 1.90%, 1.94% and 1.65% respectively. Citric acid in Hallabong and M16A was 82.32% and 69.88%, respectively among total organic acids. The content of malic acid was higher in M16A, compared to Citrus unshiu. Hesperidin and narirutin were identified main flavonoids.

Quality Properties of Hallabong Tangor(Citrus Kiyomi ${\times}$ ponkan) Cultivated with Heating (가온재배한 한라봉감귤의 품질특성)

  • Lee, Sang-Hyup;Kim, Hwa-Sun;Cho, Sung-Won;Lee, Joong-Suk;Koh, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.538-542
    • /
    • 2006
  • Physicochemical properties and positional distribution of Hallabong Tangor (Citrus Kiyomi ${\times}$ ponkan) cultivated in heated greenhouse were investigated. About 90% of Hallabong produce fruit within the range of $250{\sim}400g$ fruit weight on a tree, larger fruits were mainly consisted of $400{\sim}450g$ in M16A, a variant species of Hallabong, due to younger tree and fruit thinning. Nevertheless fruit sizes of M16A were larger than Hallabong, and peel thickness of M16A (3.29 mm) was thinner than that of Hallabong (3.51 mm). Hardness of m6h was 994.69g-force, compared to 832.8 g-force of Hallabong on the average. Soluble solids and acid content of Hallabong were $12.20{\sim}12.98^{\circ}Brix$ and $1.08{\sim}1.14%$, while those of M16A were $1.48{\sim}12.63^{\circ}Brix$ and $0.92{\sim}1.00%$, respectively. Vitamin C content of Hallabong was $71.30{\sim}78.77 mg/100 g$, compared to $64.40{\sim}68.01mg/100g$ in M16A. Soluble solid in the part of stem was lower than that of end part among the same segment. Fruit size in the upper part of the tree was larger, the peel was thicket and flesh ratio was lower than the middle or lower part. However, soluble solids and acid content were high, due to cumulative sunshine during cultivation.

Quality Characteristics of Tangor Jam including Fructo Oligosaccharide and Isomalto Oligosaccharide (프락토 올리고당과 이소말토 올리고당을 첨가한 국내산 한라봉잼의 품질특성 연구)

  • Choi, So-Rye;Park, Hyun-Ju;Jin, Hyun-Hee
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.223-234
    • /
    • 2014
  • The present study relates to the development of a processed product for expansion of use of Tangor which is mostly eaten raw in winter. Furthermore, Tangor jam containing fructo oligosaccharide and isomalto oligosaccharide was prepared, and thus quality characteristics of the jam have been determined according to the sugar concentration by making a low-sugar jam by adding substitute sweeteners instead of sugar, because low-sugar products are recently preferred in the market. Furthermore, the general elements of flesh and rind of Tangor, DPPH free radical scavenging activity, chromaticity, sugar content, pH, acidity, and preference have been checked. As a result of the experiment, the chromaticity, luminosity (L), the sugar content, and pH were the lowest in the control group. In F1, F2, and F3, which gradually added fructo oligosaccharide, and I1, I2, and I3, which slowly added isomalto oligosaccharide, luminosity significantly increased with the addition of oligosaccharide. In contrast, as the amount of addition of oligosaccharide increases, red chromaticity (a), yellow chromaticity (b), and sugar content have significantly decreased. Lastly, in the preference test using a 9 point test scheme, F2 and I2 have been considered most appropriate when producing Tangor jam.

Changes in the Quality of Hallabong Tangor(Citrus kiyomi ${\times}$ ponkan) with Growth Stage and Temperature Pretreatment Conditions (생육단계와 온도처리에 따른 한라봉 감귤의 품질변화)

  • Lee, Sang-Hyup;Kim, Jong-Hun;Jeong, Hee-Chan;Koh, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.565-570
    • /
    • 2007
  • Changes in the quality of Hallabong tangor during growth stage and with temperature pre-treatment after harvest were investigated. Soluble solids of Hallabong increased continuously until early December. The acid content of M16A, a variant species of Hallabong, decreased by 1% after October and continued to decrease until the middle of January. After ripening, treatment to reduce the acid content was required. Fruit firmness decreased gradually until November and was maintained at 1000 g-force after this time. Soluble solids and acid content were $13.3{\pm}0.83^{\circ}Brix$ and $1.07{\pm}0.52%$. Soluble solids increased in temperature-treated Hallabong with prolonged storage, but acid content did not decrease. Fruit firmness also decreased with storage period, regardless of temperature pre-treatment. Therefore, water management during cultivation, temperature treatment above $35^{\circ}C$ after harvest, and checking of the acid content and soluble solids with prolonged storage are recommended in achieving high quality Hallabong.