• Title/Summary/Keyword: Tangible User Interface Design

Search Result 38, Processing Time 0.023 seconds

A study of Design Application in Tangible User Interface

  • Zhang, Xiaofang;Kim, Se-hwa
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.943-948
    • /
    • 2009
  • In the research of HCI (Human-Computer Interaction), we always use the GUI(graphical user interface) of graphics input devices until we invent TUI (tangible user interface) which is used to control the computer by hand-touching or other subjects. In this study, we investigate and classify several TUI for the most part in business with the theory and concept of Tangible Bits by Hiroshi Ishii & Brygg Ullmer in order to research the development of TUI.

  • PDF

Augmented Reality Based Tangible Interface For Digital Lighting of CAID System (CAID 시스템의 디지털 라이팅을 위한 증강 현실 기반의 실체적 인터페이스에 관한 연구)

  • Hwang, Jung-Ah;Nam, Tek-Jin
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.119-128
    • /
    • 2007
  • With the development of digital technologies, CAID became an essential part in the industrial design process. Creating photo-realistic images from a virtual scene with 3D models is one of the specialized task for CAID users. This task requires a complex interface of setting the positions and the parameters of camera and lights for optimal rendering results. However, the user interface of existing CAID tools are not simple for designers because the task is mostly accomplished in a parameter setting dialogue window. This research address this interface issues, in particular the issues related to lighting, by developing and evaluating TLS(Tangible Lighting Studio) that uses Augmented Reality and Tangible User Interface. The interface of positioning objects and setting parameters become tangible and distributed in the workspace to support more intuitive rendering task. TLS consists of markers, and physical controller, and a see-through HMD(Head Mounted Display). The user can directly control the lighting parameters in the AR workspace. In the evaluation experiment, TLS provide higher effectiveness, efficiency and user satisfaction compared to existing GUI(Graphic User Interface) method. It is expected that the application of TLS can be expanded to photography education and architecture simulation.

  • PDF

Cubic Tangible User Interface Development for Mobile Environment (모바일 환경을 위한 큐빅형 텐저블 사용자 인터페이스 개발)

  • Ok, Soo-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.32-39
    • /
    • 2009
  • Most mobile devices provide limited input interfaces in order to maximize the mobility and the portability. In this paper, the author proposes a small cubic-shaped tangible input interface which tracks the location, the direction, and the velocity using MEMS sensor technology to overcome the physical limitations of the poor input devices in mobile computing environments. As the preliminary phase for implementing the proposed tangible input interface, the prototype design and implementation methods are described in this paper. Various experiments such as menu manipulation, 3-dimensional contents control, and sensor data visualization have been performed in order to verify the validity of the proposed interface. The proposed tangible device enables direct and intuitive manipulation. It is obvious that the mobile computing will be more widespread and various kinds of new contents will emerge in near future. The proposed interface can be successfully employed for the new contents services that cannot be easily implemented because of the limitation of current input devices. It is also obvious that this kind of interface will be a critical component for future mobile communication environments. The proposed tangible interface will be further improved to be applied to various contents manipulation including 2D/3D games.

A Study on the Characteristics of Children's Experience Exhibition Based on Tangible User Interface (TUI(Tangible User Interface)기반의 어린이 체험전시 특성 분석 연구)

  • Lee, Tae-Eun;Lee, Chang-Wook
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.341-348
    • /
    • 2020
  • This study is a basic research towards diffusion of discourse regarding TUI-based experience exhibition. In that purpose this study tries to find out the development type of children's experience exhibition using TUI by analyzing children's experience exhibition phenomena that are changing in digital environment. For the sake of this research, cases of experience exhibitions were analyzed and characteristics were derived based on TUI(Tangible User Interface) and on the types of tangibles. As results of this study, TUI elements were found in the order of interactive planes, connection of bits and atoms, and environmental media and Tangibles were ranked in the order of stuff, planes, devices, and space types. This fact shows that TUI is actively used in experience exhibitions where children's active participation and extended experience is necessary.

Tangible Tele-Meeting in Tangible Space Initiative

  • Lee, Joong-Jae;Lee, Hyun-Jin;Jeong, Mun-Ho;Jeong, SeongWon;You, Bum-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.762-770
    • /
    • 2014
  • Tangible Space Initiative (TSI) is a new framework that can provide a more natural and intuitive Human Computer Interface for users. This is composed of three cooperative components: a Tangible Interface, Responsive Cyber Space, and Tangible Agent. In this paper we present a Tangible Tele-Meeting system in TSI, which allows people to communicate with each other without any spatial limitation. In addition, we introduce a method for registering a Tangible Avatar with a Tangible Agent. The suggested method is based on relative pose estimation between the user and the Tangible Agent. Experimental results show that the user can experience an interaction environment that is more natural and intelligent than that provided by conventional tele-meeting systems.

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.

Identification of user's Motion Patterns using Motion Capture System

  • Jung, Kwang Tae;Lee, Jaein
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.453-463
    • /
    • 2014
  • Objective:The purpose of this study is to identify motion patterns for cellular phone and propose a method to identify motion patterns using a motion capture system. Background: In a smart device, the introduction of tangible interaction that can provide new experience to user plays an important role for improving user's emotional satisfaction. Firstly, user's motion patterns have to be identified to provide an interaction type using user's gesture or motion. Method: In this study, a method to identify motion patterns using a motion capture system and user's motion patterns for using cellular phone was studied. Twenty-two subjects participated in this study. User's motion patterns were identified through motion analysis. Results: Typical motion patterns for shaking, shaking left and right, shaking up and down, and turning for using cellular phone were identified. Velocity and acceleration for each typical motion pattern were identified, too. Conclusion: A motion capture system could be effectively used to identify user's motion patterns for using cellular phone. Application: Typical motion patterns can be used to develop a tangible user interface for handheld device such as smart phone and a method to identify motion patterns using motion analysis can be applied in motion patterns identification of smart device.

Sportive Kiosk Interface Design using Tangible Interaction (촉각적 인터랙션을 활용한 유희적 키오스크 인터페이스 디자인)

  • Lim, Byung-Woo;Jo, Dong-Hee;Cho, Yong-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.155-164
    • /
    • 2008
  • Kiosk is an unmanned information system arranged in public places or commercial spaces so that a user may utilize information conveniently. Unlike a personal computer, it targets varied users' brackets, so we have to consider a user's characteristic in designing Kiosk Interface. However, in reality, the Kiosks of public places like subway stations are of Interface Design without considering users and become almost useless with serviceability falling. In this study, we attempt to point out such problems and suggest the concept as to the Interface Design in the public places for a more positive promotion method. For this purpose, we are about to look into the concept of Tangible Interaction and Interspace and the recreation experienced in the process of interaction between a human and a computer and study the sportive Kiosk Interface Design in the Interspace using the principle of the Tangible Interaction. For the conceptual Model in this study, we referred to ARTCOM(ART+COM) Project.

Authoring Personal Virtual Studio Using Tangible Augmented Reality (탠저블 증강현실을 활용한 개인용 가상스튜디오 저작)

  • Rhee, Gue-Won;Lee, Jae-Yeol;Nam, Ji-Seung;Hong, Sung-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-88
    • /
    • 2008
  • Nowadays personal users create a variety of multi-media contents and share them with others through various devices over the Internet since the concept of user created content (UCC) has been widely accepted as a new paradigm in today's multi-media market, which has broken the boundary of contents providers and consumers. This paradigm shift has also introduced a new business model that makes it possible for them to create their own multi-media contents for commercial purpose. This paper proposes a tangible virtual studio using augmented reality to author multi-media contents easily and intuitively for personal broadcasting and personal content generation. It provides a set of tangible interfaces and devices such as visual markers, cameras, movable and rotatable arms carrying cameras, and miniaturized set. They can offer an easy-to-use interface in an immersive environment and an easy switching mechanism between tangible environment and virtual environment. This paper also discusses how to remove inconsistency between real objects and virtual objects during the AR-enabled visualization with a context-adaptable tracking method. The context-adaptable tracking method not only adjusts the locations of invisible markers by interpolating the locations of existing reference markers, but also removes a jumping effect of movable virtual objects when their references are changed from one marker to another.

Implementation of an Authoring Tool for Tangible user Interface (실감형 사용자 인터페이스를 위한 XML 기반 저작도구의 구현)

  • Seo, Jin-Seok;Kim, Jun-Ho;Kwon, Duk-Joong;Kim, Hong-Joon;Oh, Sei-Woong;Kim, Joung-Hyun;Kim, Chang-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • The design and implementation of the interaction for tangible user interfaces require in-depth knowledge in many different disciplines, such as device control, sensing and calibrating devices, interaction design, low-level programming, and performance tuning. Many trial and error iterations are needed to determine the proper combination of the interaction techniques while using available interaction devices and considering the characteristics of contents. As a result, it takes too much effort and time to achieve maximum usability. This paper introduces a tangible user-interface platform, which is fabricated using various hardware devices and an XML-based authoring tool, which is developed in order to relieve content creators of the burden of the above difficulties. Finally, we demonstrate our work by illustrating some example contents.