• Title/Summary/Keyword: Take-off

Search Result 922, Processing Time 0.033 seconds

A Study for Automated Division of Composite Walls for Quantity Take-off in Construction Document Phase (실시설계단계에서 수량산출을 위한 복합벽체 자동분할에 관한 연구)

  • Park, Seunghwa;Kim, Heungsoo;Yoon, Dooyung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.124-132
    • /
    • 2015
  • When Building Information Modeling (BIM) was introduced at the early stage, it was only utilized as a three-dimensional visualization tool. Nowadays, however, BIM is being studied for increasing design productivity and managing enormous information on building life cycle. One of the representative research is developing 'common prototype BIM libraries'. BIM data made of common prototype libraries should be utilized in various ways, quantity takeoff, code checking, energy analysis and so on. However, common prototype BIM libraries are not enough to estimate accurate cost. For example, composite wall libraries should be divided into several single objects, wall structure and finishes, for the quantity takeoff and construction cost calculation. In this paper, we are suggesting an automated division algorithm of composite wall and developing a system prototype for it. This study is expected to reduce extra modeling work and contribute to fast and accurate cost calculation in the construction.

THE BENEFITS OF CATTLE IN MIXED FARM SYSTEMS IN PABNA, BANGLADESH

  • Udo, H.M.J.;Meijer, J.;Dawood, F.;Dijkhuizen, A.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.495-503
    • /
    • 1992
  • The internal and external outputs of the agricultural sub-systems of mixed livestock-crop farms in Pabna Bangladesh were analysed, to clarify the multiple functions of cattle in farm systems. Production systems with grazing areas were relatively more productive than those with no grazing. There was a tremendous variation in farm income, largely because of land area. An increase of one ha in land area was estimated to boost farm income by about 50%. Number of cattle, cattle off-take percentage and milk off-take per average cow related positively to farm income. As land area decreased the relative importance of cattle production increased. Crops were dominant in producing food for home consumption. Cattle contributed only 5-6 per cent to home consumption. Cattle supplied a significant cash income: 45 per cent in the villages with grazing areas and 57 per cent in the other villages. In future, the cash output from cattle will decline and emphasis will shift to the role of cattle in supporting crop production. Any research or development strategy for livestock needs to focus first on the importance of the complex relation between livestock and crops.

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique (파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링)

  • Tanoli, Waqas Arshad;Raza, Hassnain;Lee, Seung-Soo;Park, Sang-Il;Seo, Jong-won
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.

An Analysis of Kinetic Variables That Affect High Jump Record of Students Who were Majoring in Physical Education (사범계 체육전공 대학생의 높이뛰기 기록에 영향을 미치는 운동역학적 변인 분석)

  • Cho, Jong-Hee;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.109-116
    • /
    • 2010
  • This study aims to comparatively analyze kinetic variables that affect high jump records and thus to provide the basic data for enhancement of physical education teachers' teaching skills and expertise. 10 students who were majoring in physical education in a college of education - five males and five females - were chosen for the experiment in which the 3D image analyzer and ground reaction force measuring unit were adopted. The kinetic variables of the groups, the characteristics and differences were analyzed, and the correlation between each variable and record in each group was examined. The results are as follows: As to the height of center of gravity from one step before stamping to landing, the vertical velocity of the center of gravity at take off, the vertical velocity of the limbs at take off, the angles of the hip joint and ankle joint of the jumping leg, it turned out that male were better than female. As to the angles of the hip joint and ankle joint of the lead leg, female recorded higher values than male. As to the maximum vertical ground reaction force, the maximum horizontal ground reaction force, the vertical impulse, it turned out that male were better than female.

Development of a Hovering Robot System for Calamity Observation

  • Kang, M.S.;Park, S.;Lee, H.G.;Won, D.H.;Kim, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.580-585
    • /
    • 2005
  • A QRT(Quad-Rotor Type) hovering robot system is developed for quick detection and observation of the circumstances under calamity environment such as indoor fire spots. The UAV(Unmanned Aerial Vehicle) is equipped with four propellers driven by each electric motor, an embedded controller using a DSP, INS(Inertial Navigation System) using 3-axis rate gyros, a CCD camera with wireless communication transmitter for observation, and an ultrasonic range sensor for height control. The developed hovering robot shows stable flying performances under the adoption of RIC(Robust Internal-loop Compensator) based disturbance compensation and the vision based localization method. The UAV can also avoid obstacles using eight IR and four ultrasonic range sensors. The VTOL(Vertical Take-Off and Landing) flying object flies into indoor fire spots and sends the images captured by the CCD camera to the operator. This kind of small-sized UAV can be widely used in various calamity observation fields without danger of human beings under harmful environment.

  • PDF

A Study on Improvement for Organizing Construction Bill of Quantity based on Digital Quantity Take-Off (디지털 수량산출에 기반한 건축공사 내역서 구성에 대한 연구)

  • Song, A-Reum;Kang, Ki-Su;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.198-199
    • /
    • 2014
  • In construction management the estimation procedure of construction expanses follows a series of submission phases: production of drawings, the assessment report, and the expanse report. In South Korea, it is a widely known issue that the expanse report only includes the net expanses at each construction phase and part, which makes it difficult to trace detailed basis from the records. This issue with inefficient record management should pose a number of problems, which result from discontinuation of construction record, unproductiveness for reproduction of records at each construction and submission phases for construction management, and failure to perform fair management among the contracting parties. Thus, the amendment in which the assessment report and the quantity estimation report reflect common codes to share throughout types of construction, space, and parts should be applied into practices so as to model production of acceptable reports and record.

  • PDF

3D Earthwork BIM Design Process for a Road Project

  • Raza, Hassnain;Park, Sang-Il;Lee, Seung Soo;Tanoli, Waqas Arshad;Seo, Jongwon
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.8-15
    • /
    • 2017
  • Building Information modeling is playing an important role in transforming the construction industry. It helped the industry with better visualization, minimum design errors, and excellent planning of the construction activities. Time and cost saving can be effectively achieved by using BIM for any construction project. It improves information exchange between all the project stakeholders. However, the development of earthwork 3D BIM is still underway and has not been fully implemented yet. This paper presents the study of a complete process for Earthwork BIM design using Autodesk Civil 3D. A real site road construction project is used as a case study to explain the process of earthwork modeling, starting from laser scanning to 3D model. Quantity take off calculation is very important part of any road construction project so during this study earthwork volume from two 3D earthwork model is calculated. The results obtained through this study will be the basis for future work which has been concluded in this paper.

Robustness Bounds of the Vertical Take-Off and Landing Aircraft System with Structured Uncertainties

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.459-459
    • /
    • 2000
  • The purpose of this paper is the application of the techniques for the new estimation of robustness for the aircraft systems having structured uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. The number of uncertainties will be the degree of freedoms in the calculation of the robust stability regions called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, in this paper, the quadratic form of Lyapunov function is utilized. In this paper, the practical system of vertical take-off and landing (VTOL) aircraft is analyzed with the proposed stability criteria based upon the Lyapunov direct method. The application of numerical procedures can prove the improvements in estimations of robustness with structured uncertainties. The applicable aircraft system is assumed to be linear with time-varying with nonlinear bounded perturbations.

  • PDF

The Transmission Development with P.T.O Axle Design for Work Vehicle Including Multi-faculty (다기능 작업차를 위한 P.T.O 축 및 트랜스밋션의 최적설계 및 개발)

  • Kwac, Lee-Ku;Kim, Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.108-117
    • /
    • 2008
  • A transmission designed with P.T.O(Power Take-Off) axle for agricultural work vehicles including multi-purpose vehicles has been developed. It is focused on the 4-wheel drive transmission of synchronous contact type for practical use in fruit tree households which is required for a large-sized agricultural vehicle. Concerning to the specification performed, the load capacity is from 500kg to 1,000kg and the safety should be secured for passengers. In addition, the driving condition should also be secured under bad situations of the topographic slope, swampy land and the rest. In order to carry out above tests, a prototype vehicle through strength analysis of transmission design has been manufactured. Consequently, optimal design conditions on the power transmission with multi-purpose vehicle for various jobs are proposed such as an indication of optimal RPM and torque at a certain work situation. The performance test through the prototype of multi-purpose work vehicle is performed and the related data base is achieved. Finally, it is improved on troubles by the analysis of the results of R&D and provided the solutions on problems occurring to mass production in the future.