• Title/Summary/Keyword: Takanelite

Search Result 3, Processing Time 0.018 seconds

A Molecular Dynamics Simulation Study of Ranciéite-takanelite Solid Solution Crystal Structures (란시아이트-다카네라이트 고용체 결정구조에 대한 분자동역학 시뮬레이션 연구)

  • Han, Suyeon;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • Ranciéte is a hexagonal phyllomanganate mineral containing random Mn(IV) vacancies with hydrated Ca2+ cations charged balanced as interlayer cations. Its Mn2+ analogue is called takanelite, and ranciéite and takanelite are regarded as end-members of a solid solution series of (Ca2+,Mn2+)Mn4O9·nH2O. Because the minerals are found as very small particles associated with other minerals, the crystal structures of the solid solution series have yet to be defined. In this research, we conducted classical molecular dynamics (MD) simulations of ranciéite and takanelite by varying the Mn2+/Ca2+ interlayer cation ratio to find relations between the interlayer cations and mineral structures. MD simulation results of chalcophanite group minerals are compared with experimental results to verify our method applied. Then, lattice parameters of ranciéite and takanelite models are presented along with detailed interlayer structures as to the distribution and coordination of cations and water molecules. This study shows the potentials of MD simulations in entangling complicated phyllomanganates structures.

Crystal Chemistry of Hexagonal 7$\AA$ Phyllomanganate Minerals (7$\AA$ 층상구조형 산화망간 광물의 결정화학)

  • 김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.34-43
    • /
    • 1990
  • Crystal-chemical study of hexagonal 7$\AA$ phyllomanganate minerals reveals that they have hexagonal layer structures with variable c dimensions which depend on the nature of interlayer cations and content of water molecules between edge-sharing [MnO6] octahedral layers. Approximately one out of nine octahedral sites is statistically vacant, leading to the general unit cell formula R2xMn4+1-xO2.nH2O, where R=Ca, Mn2+, Mg, K, Na;x=0.09-0.14 ; n-0.37-0.84. Z=1. The minerals of this formula fall under the name of rancieite group. It includes Ca-diminant (rancieite), Mn2+-dominant (takanelite), Na-dominant (birnessite), and Mg-dominant members. Minerals of the rancieite group occur predominantly in two different hydration states, i.e., n shows the values around 0.35 and 0.75. It is suggested that minerals of higher hydration state be called as species(i.e., rancieite, etc.) and those of lower hydration state be called as dehydrated varieties(i.e., dehydrated rancieite,etc.).

  • PDF

Chemistry and Dehydration Behavior of (Ca, Mg)-buserite from the Janggun Mine, Korea (장군광산에서 산출되는 (Ca, Mg)-부서라이트의 화학조성과 탈수현상에 관한 연구)

  • Choi, Hun-Soo;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.102-108
    • /
    • 1992
  • The natural (Ca, Mg)-buserite has been identified from the manganese oxideores of the Janggun mine, Korea, which have been formed by supergene weathering of sedimentary-metamorphic rhodochrosite. It occurs together with rancieite forming one very fine-grained buserite-rancieite flake. This (Ca, Mg)-buserite-rancieite occurs as microcystalline flaky crystals. It precipitated around the fine-grained takanelite aggregate. Electron microprobe analyses give the formula ($Ca_{.08}Mg_{.07}Mn_{.05}^{2+})Mn_{.89}^{4+}O_2{\cdot}1.46H_2O$ for (Ca, Mg)-buserite. The dehydration experiments by relative humidity control and heating as well as rehydration experiment by relative humidity control show that (Ca, Mg)-buserite dehydrates completely at 90$^{\circ}C$ and rehydrates up to 27% of the original state. The dehydration at 26% RH (corresponding to heating to about 40$^{\circ}C$) is characterized by thedecrease in the decrease in the intensity of 9.86${\AA}$ peak with slight shifting to 9.60${\AA}$. It is due to the loss of weakly bound water molecules in the interlayer. The dehydration from 40$^{\circ}C$ to 90$^{\circ}C$ is characterized by the gradual shifting of 001 peak from 9.6${\AA}$ to 7.42${\AA}$. It is due to the loss of weakly bound water molecules in the interlayer.

  • PDF