• 제목/요약/키워드: Taguchi methodology

검색결과 75건 처리시간 0.019초

반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법 (A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods)

  • ;신상문
    • 품질경영학회지
    • /
    • 제46권1호
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.

실험계획 전문가 시스템 (An Expert System for Design of Experiment)

  • 김성인;문순환
    • 산업공학
    • /
    • 제7권2호
    • /
    • pp.99-105
    • /
    • 1994
  • The Artificial Intelligence Lab of Industrial Engineering Department, Korea University is continuing to develop expert systems for quality control methods such as acceptance control, process control and reliability analysis. As a series of these efforts, The Artificial Intelligence Lab of Industrial Engineering Department, Korea University is continuing to develop expert systems for quality control methods such as acceptance control, process control and reliability analysis. As a series of these efforts, this paper concerns an expert system for design of experiment. The system includes factorial experiments, response surface methodology and Taguchi method. PROLOG is used as a language with dBASE III+ for the data base management system and C for calculations and graphics. This system selecting the appropriate method and analyzing the data obtained can be implemented on an IBM PC 386 or a higher level machine.

  • PDF

상용코드 통합을 통한 미소기전집적시스템의 설계 소프트웨어 개발:DS/MEMS (Development of Design Software for MEMS integrating Commercial Codes: DS/MEMS)

  • 허재성;이상훈;곽병만
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.180-187
    • /
    • 2003
  • A CAD-based seamless design system for MEMS named DS/MEMS was developed which performs coupled-field analysis, optimal and robust design. DS/MEMS has been developed by means of integrating commercial codes and inhouse code-SolidWorks, FEMAP, ANSYS and CA/MEMS. This strategy results in versatility that means to include various analysis model, corresponding analyses and approximated design sensitivity analysis and user friendliness that design variables are taken to be selectable directly from a CAD model, that the problem is formulated under a window environment and that the manual job during optimization process is almost eliminated. DS/MEMS works on a parametric CAD platform, integrating CAD modeling, analysis, and optimization. Nonlinear programming algorithms, the Taguchi method, and response surface method are made available for optimization. One application problem is taken to illustrate the proposed methodology and show the feasibility of DS/MEMS as a practical tool.

주파수 가중함수를 적용한 흡기계의 강건설계 연구 (Study on the Robust Design of an Intake System Using a Frequency Weighting Function)

  • 이종규;박영원;채장범
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.680-686
    • /
    • 2005
  • This paper introduces the robust design of an intake system using transmission loss and the frequency weighting function. First, transmission loss is measured to evaluate the performance of the noise reduction for the intake system. The robust design parameters of the intake system are extracted by adapting a cost function with the Taguchi method. Subsequently, the frequency weighting function is developed by the subjective evaluation in which 6 special engineers were participated. Finally, the comparison between the proposed frequency weighted optimal design and unweighted optimal design for the transmission loss as the part is performed. Here, the overall levels of the transmission loss according to the methods are presented to validate the effectiveness of the proposed methodology.

연성 시스템의 강건설계 방법 (Robust Design Methodology of a Coupled System)

  • 이권희;박경진;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

일반적인 SN비에 관한 소고 (A Note on Generalized Signal-to-Noise Ratios)

  • 임용빈;이영조
    • 품질경영학회지
    • /
    • 제25권4호
    • /
    • pp.88-98
    • /
    • 1997
  • For quality improvement, it is important to reduce variations of the quality characteristic. That can be achieved by the a, pp.ication of parameter design methodology to make the performance of the quality characteristic robust over the variety of noise conditions. Taguchi has used the signal-to-noise ratios for that purpose. For the static target characteristic and the dynamic characteristic problem, we propose a reasonable generalized SN ratio and p-value plot for identifying dispersion factors. The orginal idea of the p-value plot in from the gamma-plot in Lunani, Nair & Wasserman(1995). The graphic advantage of the p-value polt for identifying dispersion factors is illustrated through constructed examples.

  • PDF

전문가 의견을 고려한 다특성치 파라미터 설계에 관한 연구 (The Parameter Design of Multiple Characteristics with Engineer's Opinions)

  • 조용욱;박명규
    • 품질경영학회지
    • /
    • 제27권2호
    • /
    • pp.218-236
    • /
    • 1999
  • The purpose of parameter design is to determine optimal settings of design parameters of a product or a process such that the performance characteristics of a product exhibit small variabilities around their target values. Taguchi made significant contributions in this area. However, his analysis of the problem focused on only one performance characteristic or response, although in product and process design, multiple characteristics are more common. The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this paper, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal balance among several different response variables is developed. Existing case studies are solved by the proposed method and the results are compared with ones by the sum of SN ratios, the expected weighted loss, the desirability function, and EXTOPSIS model.

  • PDF

특성치 중요도를 고려한 다중특성치 파라미터 설계에 관한 연구 (A Study on the Parameter Design of Multiple Characteristics Considering Characteristical Importance)

  • 김용범;조용욱;김우열
    • 한국국방경영분석학회지
    • /
    • 제25권2호
    • /
    • pp.62-72
    • /
    • 1999
  • Taguchi´s parameter design is to determine the optimal settings of design parameters of a product or a process such that the characteristics of a product exhibit small variabilities around their targer values. His analysis of the problem has focused only on a single characteristic or response. However the quality of most products is seldom defined by a characteristic, and is rather the composite of a great number of characteristics which are often interrelated and nearly always measured in a variety of units. The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this paper, Methodology using SN ratio optimized by unvariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. One existing case study is solved by the proposed method and the results are compared with ones by the sum of SN ratios, the expected weighted loss, the desirability functions, and EXTOPSIS model.

  • PDF

다수의 주관적 요소와 객관적 요소를 고려한 다특성치 강건설계 (The Robust Parameter Design of Multiple Characteristics with Multiple Objective and Subjective Attributes)

  • 조용욱;박명규
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2000년도 추계학술발표논문집
    • /
    • pp.251-254
    • /
    • 2000
  • The critical problem in dealing with multiple characteristics is how to compromise the conflict among the selected levels of the design parameters for each individual characteristic. In this study, First, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achieve the optimal compromise among several different response variables is developed. Second, to solve the issue on the optimal design for multiple quality characteristics, this study modelled the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms. The model will be used to determine the global optimal design parameters where there exists the conflict among the characteristics, which shows difference in optimal design parameters for the individual characteristics. Third, this paper propose a decision model to incorporates the values assigned by a group of experts on different factors in weighting decision of characteristic. Using this model, SN ratio of taguchi method for each of subjective factors as well as values of weights are used in this comprehensive method for weighting decision of characteristic.

  • PDF

안정성 설계방법을 이용한 자동흐름라인의 완충재고용량 할당 (Allocation of Buffer Capacity in Automatic Transfer Line Using Robust Design Method)

  • 서순근;정원기
    • 산업공학
    • /
    • 제12권2호
    • /
    • pp.210-221
    • /
    • 1999
  • Several researchers have previously studied the problem of allocating buffer storage to maximize the throughput rate and/or minimize the mean buffer average of a transfer line for a given total amount of buffer space. But there seems to be very little difference in performance between intuitively reasonable and optimal allocations. This paper proposes and illustrates a methodology, based on the robust design concept of Taguchi, to allocate buffer storage of long transfer lines with a given total amount of buffer capacity when up and down times follow exponential distributions, respectively. We show how this procedure using simple heuristic rule can be used for design of long transfer lines.

  • PDF