• Title/Summary/Keyword: Taguchi Parameter Design

Search Result 181, Processing Time 0.033 seconds

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 팬터그래프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2003
  • Pantograph design Process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings(FW-H) equation is used to calculate the flow induced sound pressure level in aeroacoustics. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25 m away from Pantograph. Based on aerodynamic(CFD) and aeroacoustic(FW-H) analysis data, the optimal sizing and Positioning of panhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. In this paper, two-step optimization method is used as a parameter design procedure. It is executed using signal to noise(S/N) ratio and analysis of means(ANOM) method. So Thus, an optimal level of design parameters Is extracted to minimize the disconnection ration between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 판토그라프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1235-1241
    • /
    • 2001
  • Pantograph design process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore Pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings (FW-H) equation is used to calculate the flow induced sound pressure level. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25m away from panhead contact strips. Based on aerodynamic (CFD) and aeroacoustic (FW-H) analysis data, the optimal sizing and positioning ofpanhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. Using a parameter design procedure associated with signal-to-noise (SIN) ratio and sensitivity analysis, an optimal level of design parameters are extracted to minimize the disconnection ratio between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

  • PDF

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

Manufacturing Parameters Affecting Physical Properties and Tribological Behavior of Brake Linings (마찰재의 물성 및 트라이볼로지 특성에 영향을 미치는 주요 성형인자)

  • Kim, Seong-Jin;Kim, Kwang-Seok;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • The Taguchi method, a robust experimental design, was used to optimize manufacturing parameters of a brake lining during hot pressing and heat treatment. A friction material containing 15 ingredients was employed fur this experiment and friction and wear tests were carried out by using a pad-on-disk type tribotester. Sixteen brake linings with different manufacturing conditions were examined according to a parameter design. From the results of the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA), the cause and effect of the manufacturing parameters on physical properties (hardness and porosity) and friction and wear characteristics of brake linings was obtained.

A Study on Manufacturing of Plastic Injection Mold for Warpage Characteristics of Mobile Phone Cover (모바일폰 커버의 휨특성 평가를 위한 금형 제작에 관한 연구)

  • Kim M. Y.;Lee S. H.;Kwon C. O.;Kim O. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.126-131
    • /
    • 2005
  • In the present study, warpage characteristics of mobile phone cover through injection molding process were investigated by using design of experiments. Warpage in plastic injection molding process has a significant effect on quality of product. Effects of injection time, packing pressure, packing time, mold temperature ana melt temperature on warpage of mobile phone cover were considered by CAE analysis and experiment with Taguchi method. The degree of warpage for the injection molded product was measured by using three dimensional CMM. It was shown that temperature parameter has more significant effect on the warpage of mobile phone cover than pressure parameter.

  • PDF

Development of Application Models Based on the Robust Design (타구치 로버스트 계획에서 응용모형의 개발)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.203-209
    • /
    • 2011
  • This study develops three new models that are practically applicable to three stages of Taguchi's robust design, which includes system design, parameter design and tolerance design. In system design, the Multiple Loss Function Analysis(MLFA) and Overall Loss Index(OLI) which reflect upon weight of characteristics and importance of specification are developed. Moreover parameter design presents Process Capability Index(PCI), $C_{PUK}$ and $C_{PLK}$, in order to segregate Signal-To-Noise Ratio(SNR) into accuracy and precision for an evaluation of relative comparison. In addition, tolerance design presents the new model of allowance computation for assembled product which is primarily derived from safety margin(SM) considering functional limit and specification. The guideline of those three new models, which include systematic charts and applicable illustrations, offers convenience for practitioners in the field. Hence, the practical applications could be made with the steps of robust designs such as system design, parameter design and specification allowance design.

The Improved Cutting Parameter Design of End-milling for SM25C Material (SM25C 재질의 엔드밀 가공을 위한 개선된 절삭파라미터 선정)

  • Im, Sung-Hoon;Kim, Kyeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we selected primary cutting parameters that influence on surface roughness of cut bottom surface in end-milling for SM25C material. Those are overhang, depth of cut, feed rate and spindle speed. And then performed orthogonal array experiment and ANOVA by Taguchi method to determine that improved level combination of cutting parameters for betterment of working efficiency and surface roughness one of quality characteristics. And we verified a advisability of prediction model by verification test about level combination. From the results, main cutting parameter influences on surface roughness is spindle speed and the next is feed rate.

Evaluation and optimization of geometric error by using Taguchi method (다구찌기법에 의한 형상오차 평가 및 최적화)

  • 지용주;곽재섭;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.298-303
    • /
    • 2004
  • parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

Quality Improvement of Black Oxide Process in Casting (주조품 Black Oxide 공정의 품질개선에 관한 연구)

  • Lee, Dong Hee;Lee, Kyung Keun;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.1
    • /
    • pp.96-109
    • /
    • 1996
  • In this paper, we consider the quality problem of black oxide process in casting for which Taguchi method is used. We explain simply the Taguchi method and existing problems in Black Oxide process. We analyze the problem by the quality improvement procedure proposed by Taguchi. The design factors and noises using cause-effect diagram are found, the experiment is made using orthogonal array. After ANOVA, the critical factors are determined and the optimal process condition is designed. After parameter design, we derive the tolerance levels. As a result of changing the levels of process parameters, the variance of quality characteristic was decreased by quarter and the average value was also decreased by half. We estimated the predictable profit of the improvement.

  • PDF