• 제목/요약/키워드: Taguchi DOE

검색결과 40건 처리시간 0.03초

드로잉 공정을 이용한 대형 반구 형상 제작에 관한 연구 (Use of a Drawing Process to Manufacture a Large-Size Dome Shaped Forging-Produts)

  • 이성욱;조종래;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.531-534
    • /
    • 2008
  • A new forming process of the large-size forging within the limit of forming loads is developed by introducing the drawing process, which usually used to apply to sheet forming. For the development of the forming process, corresponding numerical simulation are carried out. The approach is based on the Taguchi method, and utilize the DOE for design of FEM analyses. In this study, the important factors are chosen at first, and then the concept of signal-to-nose(S/N) rate is applied to evaluate the formability of large size forging-products, and each value of the design parameter is determined.

  • PDF

Al5052-O 판재의 최적 점진성형 연구 (Optimization of Single Point Incremental Forming of Al5052-O Sheet)

  • 김찬일;샤오샤오;도반크옹;김영석
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.181-186
    • /
    • 2017
  • 점진 판재 성형은 금형을 제작하지 않고 판재를 가공하는 방법으로써 빠른 시제품 제작과 소량 생산에 적합한 성형법이다. 이러한 점진 판재 성형의 공정 변수로 공구 직경, 매 스탭당 z-방향 깊이, 공구 이송속도, 공구 회전 속도 등은 성형품의 품질에 크게 영향을 미친다. 본 연구에서는 Al5052-O(0.8mm) 판재를 사용하여 Varying Wall Angle Conical Frustum 모델의 점진성형을 실시하였으며, 각각의 변수들의 조합에서 성형성을 판단하였다. 다구찌 기법을 사용하여 점진성형 변수들의 조합을 찾아내고, 그레이 관계형 최적화를 통하여 최적 성형 변수 값의 조합을 찾아 내였다. 최종 성형물의 품질은 성형성, 스프링 백, 두께 감소량을 측정하여 판단하였다. 본 연구의 실험 조건에서의 최적의 변수 조합은 공구직경 6 mm, 회전속도 60rpm, 매 스탭당 z-방향 깊이 0.3 mm, 이송속도 500 mm/min으로 판단되었다.

NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구 (Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM)

  • 정진은;안중규
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4729-4735
    • /
    • 2014
  • 적극적인 환경보호를 위해 그동안 상대적으로 소홀하였던 오프로드 엔진에 대한 배기가스 배출 규제가 강화되고 있다. 본 연구에서는 NOx와 PM 배출물 특성을 고려하여 오프로드 디젤 엔진의 강건 설계를 수행하였다. 이를 위하여 실험계획법에 따라 배출물 NOx와 PM의 측정 실험을 수행하고 다구찌 기법으로 망소 SN 비를 산출하고 분산 분석을 수행하였다. NOx와 PM 배출량에 영향을 미치는 제어 인잘로 인젝터 홀 수, 연료 분사 시기, EGR 율을 선택하였으며 각 제어 인자에 대하여 2 또는 3 수준을 고려하여 직교 배열표를 작성하였고, 이에 근거하여 실험을 수행하였다. 망소 SN 비를 산출하고 델타 통계량을 계산하였다. 저부하 운전 조건에서는 분사 시기가 NOx 배출량에 가장 큰 영향을 미치며, EGR 율이 PM 배출량에 가장 큰 영향을 미치는 결과를 얻었다. 제어 인자들에 대한 신뢰수준은 90% 이상이었다.

미러 형상인자가 바람소리에 미치는 영향에 대한 연구 (A Study on the Impacts of Mirror Design Parameters on the Wind Noise)

  • 이강덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.130-136
    • /
    • 2009
  • The goal of this paper is to develop a standard side mirror geometry that will perform well across multiple vehicles. One of the important performance attributes of a side mirror is the amount of wind noise generated under the flow conditions on a car. PowerFLOW can be used for Computer Aided Testing of the aeroacoustics performance of a design in addition to directing design modifications based on a detailed analysis of the flow structures responsible for the noise generation. Alternatively, a Design of Experiment (DOE) approach is useful to explore the design space without any a-priori assumptions of the effects of design parameter changes. Some general design guidelines regarding the significant mirror geometry factors will be determined which may help to reduce vehicle development time and cost in the future. The results of this research will also allow us to estimate the trade-off between cost saving and performance optimum related to using a standard mirror shape for different vehicles.

  • PDF

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

제진재의 최적배치를 이용한 차량공조시스템의 음질개선 (Improvement of Sound Quality for the Vehicle HVAC System Using Optimum Layout of Damping Material)

  • 오재응;황동건;박상길;윤태건;심현진;이정윤
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.728-733
    • /
    • 2006
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to independence, homoscedesticity and normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved more quietly, powerfully, even though costly, and smoothly.

자동굴절검사기용 대형 원판형 기어의 변형 최적화 (Optimization of the Deflection for large Disk type Gear of Auto Phoropter)

  • 정태성
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.370-376
    • /
    • 2011
  • Recently, the application range of plastic gears is widely expanding by the development of engineering plastics with good mechanical properties. Plastic gears have excellent performances such as light weight, water resistance and vibration absorbing ability for metallic gears. In this study, the optimization of injection molding process was done for the large disk type plastic gears of auto phoropter. Design Of Experiment (Taguchi method) was adopted to find a tendency of molding conditions that influence the flatness of disk type gear. Four main factors for molding conditions were selected based on injection temperature, filling time, packing pressure and mold temperature. Also, Filling, packing and cooling analyses were carried out to evaluate Z directional deflection of large disk type gear by using the simulation software (Moldflow) based on the DOE. From the results, it was found that the injection temperature and packing pressure are the most sensitive parameters for the Z directional deflection of large disk type gears.

순차이송방식 GMP 공정에서 공정변수가 유리렌즈 성형성에 미치는 영향 (Effect of the Molding Conditions on Formability in Progressive Glass Molding Press)

  • 정태성;박규섭;김동식
    • 소성∙가공
    • /
    • 제18권8호
    • /
    • pp.633-639
    • /
    • 2009
  • Remarkable progress had been made in both technology and production of optical elements including aspheric lens. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. Against such a background, the high-precision optical GMP process was developed with an eye on mass production of precision optical glass pasts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as for cameras, video cameras, aspheric lenses for optical items. In this study, Design Of Experiment(Taguchi method) was adopted to find a tendency of molding conditions that influence formability. Three main factors for molding conditions were selected based on pressure at pressing stage and temperature, pressure at cooling stage. Also, the DOE was carried out and the interference patterns were measured to evaluate the formability of GMP process. From the results, it was found that the cooling pressure is the most sensitive parameter for progressive GMP process.

Optimization of Wear Behavior on Cenosphere -Aluminium Composite

  • Saravanan, V.;Thyla, P.R.;Balakrishnan, S.R.
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.322-329
    • /
    • 2015
  • The magnitude of wear should be at a minimum for numerous automobile and aeronautical components. In the current work, composites were prepared by varying the cenosphere content using the conventional stir casting method. A uniform distribution of particles was ensured with the help of scanning electron microscopy (SEM). Three major parameters were chosen from various factors that affect the wear. A wear test was conducted with a pin-on-disc apparatus; the controlling parameters were volume percentages of reinforcement of 5, 10, 15, and 20%, applied loads of 9.8, 29.42, and 49.03 N, and sliding speeds of 1.26, 2.51, and 3.77 m/s. The design of the experiments (DOE) was performed by varying the different influencing parameters using the full factorial method. An analysis of variance (ANOVA) was used to analyze the effects of the parameters on the wear rate. Using regression analysis, a response curve was obtained based on the experimental results. The parameters in the resulting curve were optimized using the Genetic Algorithm (GA). The GA results were compared with those of an alternate efficient algorithm called Neural Networks (NNs).

980MPa급 열연 후판재 버링 공정의 변수 최적화 연구 (Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal)

  • 김상훈;도두이퉁;박종규;김영석
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.