• Title/Summary/Keyword: Taehwa Research Forest

Search Result 19, Processing Time 0.018 seconds

Variation of OC and EC in PM2.5 at Mt. Taehwa (태화산 PM2.5 OC와 EC의 변화 특성)

  • Ham, Jeeyoung;Lee, Meehye;Kim, Hyun Seok;Park, Hyunju;Cho, Gangnam;Park, Jungmin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.21-31
    • /
    • 2016
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured with Sunset OC/EC Field Analyzer at Taehwa Research Forest (TRF) near Seoul metropolitan area from May 2013 to April 2014. During the study period, the mean concentrations of OC and EC were $5.0{\pm}3.2{\mu}gC/m^3$ and $1.7{\pm}1.0{\mu}gC/m^3$, respectively. They showed clear seasonality reaching their maximum in winter ($6.5{\mu}gC/m^3$ and $1.9{\mu}gC/m^3$) and minimum in wet summer ($2.5{\mu}gC/m^3$ and $1.4{\mu}gC/m^3$). While OC showed greater seasonal variation, the diurnal variation was more noticeable for EC through all seasons with a clear maximum in the morning, which reveals the influence of vehicle emissions. In contrast, OC exhibited a broad second peak in the afternoon during May~June, when biological activities were the highest. Using the morning peaks of EC and OC, primary OC/EC ratio was assessed, which was assumed to be anthropogenic origin. It was the greatest in winter followed by spring and the lowest in wet summer. The seasonal difference in primary OC/EC ratio implies the influence of non-local sources of OC at the Mt. Taehwa.

The Analysis of Correlation between BVOCs and Ozone at Taehwa Research Forest

  • Kim, Dan-Bi;Lee, Sang-Deok;Lee, Seung-Ha;Kim, Rhok-Ho;Lee, Yeong-Jae;Chae, Hee-Mun
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.153-161
    • /
    • 2018
  • Ozone absorbs ultraviolet light which is harmful to life. However, the recent increase of ambient ozone level due to climate change is becoming the cause of stimulating human eyes, affecting respiratory system, and damaging crops. In this paper, a study was conducted at the Taehwa Research Forest (TRF) of Seoul National University with the purpose of analyzing the characteristics of forest air chemistry based on the measurement of BVOCs emitted from forests and investigating the correlation of BVOCs with ozone generation. The results showed that levels of isoprene and MVK (Methyl Vinyl Keton)+MACR (Methacrolein) were high in summer, but level of monoterpene was high in spring. Ozone level was high from the middle of May to the middle of June, which was before the rainy season. Comparison of the correlation between ozone and isoprene during the measurement period at the TRF showing limited NOx showed that the $R^2$ was correlated with a low value of about 0.4. However, when the isoprene was actively produced from 6:00 AM to 6:00 PM, correlation analysis showed that $R^2$ was about 0.9, while monoterpene started to increase in the afternoon, and decreased level of ozone at night. Correlation analysis showed negative correlation. Forests have two characteristics: not only the formation of ozone but also the decomposition of ozone.

A Preliminary Flux Study for CO2 and Biogenic VOCs in a Forest (산림지역 이산화탄소 및 자연적휘발성유기화합물의 교환량 관측기법 기초연구)

  • Kim, So-Young;Kim, Su-Yeon;Choi, Soon-Ho;Kim, Sae-Wung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.485-494
    • /
    • 2012
  • The purpose of this study is to monitor the flux of $CO_2$ and BVOCs (biogenic volatile organic compounds) between the atmosphere and forest. The main research activities are conducted at Taehwa Research Forest (TRF), managed by the College of Agriculture and Life Sciences at Seoul National University. The TRF site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus Koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest and REA (Relaxed eddy accumulation) method applying eddy covariance was used for BVOCs flux. BVOCs flux that was measured in spring (from May 16 to 18) had distribution of 84 to $2917{\mu}g/m^2{\cdot}h$. Especially, it showed that d-limonene being strong reactivity composed the largest fraction of monoterpene. Ambient $CO_2$ concentration measured in Mt. Taehwa was 399 ppm and observed $CO_2$ fluxes between the atmosphere and forest suggested that during the day, $CO_2$ is absorbed by plants through photosynthesis and released during the night.

Winter bird monitoring of lower Taehwa river in the Ulsan city (울산 태화강하류의 겨울철 조류 모니터링 연구)

  • Lee, Jong-Nam
    • Journal of Wetlands Research
    • /
    • v.7 no.4
    • /
    • pp.81-88
    • /
    • 2005
  • A total of 14,034 individual birds, 11 orders 21 families, were observed during the four year study periods from 2001 to 2004 winter season on the lower Taehwa river. In 2001 the species was the highest with 48, and then the lowest with 31 in 2004. Population was peaked with 11,991 in 2002, but the lowest number was 3,476 in 2004. The birds recorded more than 5% relative dominance were Aythya ferina (6,946), Corvus frugilegus (1,643), Larus ridibundus (1,193) and Larus crassirostris (805), and their total numbers were 10,587 individuals, 75.4% of the total individuals. For wintering birds protection on Taehwa river, it is necessary to make feeding site, shelter and buffer zone along the river. Establishment of wall or forest for absorbing sound and light should be created between road and flood plain. Besides these artificial facilities, the public awareness of citizens will be the most important thing to protect birds. Moreover, it is necessary to prepare conservation and management measures for the river bed where Taehwa river meets Dong river where the birds used bamboo forest($2{\times}0.1km^2$) for breeding and roosting.

  • PDF

Concentrations of Carbonaceous Compounds and Quantitation of Secondary Organic Carbon in PM2.5 at Taehwa Research Forest

  • Lee, Seung-Ha;Lee, Sang-Deok;Kim, Dan-Bi;Kim, Rhok-Ho;Lee, Sang-Bo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.53-56
    • /
    • 2018
  • Elemental carbon (EC) and organic carbon (OC) mass concentrations in PM2.5 were measured from March through October 2015 in Taehwa Research Forest (TRF). The concentration of carbon in the TRF was $3.4{\mu}g/m^3$ and the concentration of EC was $1.4{\mu}g/m^3$. Also the concentration of $OC_{sec}$ was the highest at $2.84{\mu}g/m^3$ in the summer and the lowest at 1.66 in the spring. The ratio of the secondary generation OC in the total OC was the highest at 62% in the summer. Monthly OC concentration was the lowest at $2.38{\mu}g/m^3$ in April and the highest at $6.60{\mu}g/m^3$ in July. In case of EC concentration was the lowest in April ($0.98{\mu}g/m^3$) and the highest in July ($3.41{\mu}g/m^3$). The OC/EC ratio showed the lowest ratio in March and the highest rate in September. It is suggested that the secondary generation reaction of OC component was active due to sufficient irradiation amount in summer.

ECOREGION CLASSIFICATION WITH CLIMATE FACTORS AND FOREST FIRE

  • Shin, Joon-Hwan
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2002.12a
    • /
    • pp.94-95
    • /
    • 2002
  • South Korea is divided into five ecoprovinces and sixteen ecoregions. The criteria for ecoprovince classification are ecosystem connectivity and cultural homogeneity. Ecoregions are classified by cluster analysis. The variables used in the analysis are latitude, longitude, seasonal mean temperature, and seasonal precipitation. The large forest fires occurred in the specific ecoregions including Kangwon coastal ecoregion, WoolYoung coastal ecoregion, Hyungsan Taehwa coastal ecoregion, Upper Nagdong river basin ecoregion and Southeastern inland ecoregion. The largest forest fire in the korean history occurred in Kangwon coastal ecoregion in the year 2000. The fire devastated the forestland over 25,000ha. Korea Forest Service, Ministry of Environment, Province Kangwon and NGO organized an investigation committee for the restoration of the burnt area. The committee suggested restoration principles and also forged a restoration strategy of the Kangwon burnt area.

  • PDF

Carbon Storage of Quercus mongolica Stands by Latitude and Altitude in Korea

  • Kwon, Ki-Cheol;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.2
    • /
    • pp.220-231
    • /
    • 2006
  • The study was conducted to investigate the differences in carbon storage of Quercus mongolica stands with respect to latitude and altitude in Korea. Study sites were located in Mt. Joongwang, Pyeongchang-gun, Gangwon-do (altitudes 1,300 m, 1,000 m, and 800 m), Mt. Taehwa, Gwangju-si, Gyeonggi-do (altitude 350 m), Mt. Wolak, lecheon-si, Chungcheongbuk-do (altitude 300 m), Mt. Baekwoon, Gwangyang-si, Jeollanam-do (altitude 800 m), and Mt. Halla, Jeju-do (altitude 1,000 m). Total carbon storage and annual carbon storage of Q. mongolica stands were 85-210 tonC/ha and 7.2-10.6 tonC/ha, respectively. Lower latitude (NE) stands of Q. mongolica showed more carbon storage and annual carbon storage than higher latitude stands. Carbon storage and annual carbon storage of Q. mongolica stands were increased in low altitude. Carbon storage of Q. mongolica stands was higher in the northern aspect than in the southern aspect. However, there were no significant differences in annual carbon storage between the aspects.

Productive Structure and Net Production of Quercus mongolica forest in Mt. Taehwa (Kwangju, Kyonggi-do) (경기도 광주시 태화산 신갈나무림의 생산구조와 생산성)

  • 손석용;권기철;정택상
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This study was to investigate the productivity of 30-year-old Quercus mongolica forest in the Experimental Forest of Seoul National University located in Mt. Taehwa, Kyonggi-do, Korea. Eight sample trees were selected and cut off. Stem, branches and leaves were weighed respectively with the stratified clipping method, and analyzed for productive struts lure. The allometric regression equations between dry weight of each component(stem, branches, and needles) and D$^2$H were obtained. The results obtained are summarized as follows; (1) Photosynthetic layer of Quercus mongolica was shown at about 4m in height, and maximum needle amount of crown at 10m in height. (2) The total biomass of aboveground was 67.886ton/ha(75.5% from stem, 19.4% from branches and 5.1% from needles). (3) Annual net production of aboveground was 12.76ton/ha/yr, and the ratios of stem, branches and needles to that of aboveground, 44.1%, 28.7% and 27.2%, respectively.

  • PDF

Energy Content and Photosynthetic Efficiency of Quercus mongolica Stands in Korea

  • Kwon, Ki-Cheol;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.562-568
    • /
    • 2006
  • This study was conducted to examine the energy content and photosynthetic efficiency of Quercus mongolica stands in Korea. Study sites were located in Mt. Joongwang, Gangwon-do (1,000 m and 800 m above sea level), Mt. Baekwoon, Jeollanam-do (800 m a.s.l.), Mt. Halla, Jeju-do (1,000 m a.s.l.), Mt. Taehwa, Gyeonggi-do (350 m a.s.l.), and Mt. Wolak, Chungcheongbuk-do (300 m a.s.l.). Total energy content and annual energy accumulation in Q. mongolica stands were 2,916-6,435 GJ/ha and 284-441 GJ/ha, respectively. Lower latitude (N.L.) stands of Q. mongolica showed higher energy contents than higher latitude stands, but Quercus stands in Mt. Baekwoon had higher annual energy accumulation than those in Mt. Halla located at a lower latitude. During the growing season, the photosynthetic efficiency of 60 to 70-year-old Q. mongolica stands ranged from 1.19 to 1.34% while that of 35-year-old stands did from 1.87 to 1.95%. There were no significant differences in photosynthetic efficiency among the latitudes because solar radiation was higher in low latitudes.

Analysis of Land Cover Change in the Waterfront Area of Taehwa River using Hyperspectral Image Information (초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석)

  • KIM, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • Land cover maps are used in various fields in urban expansion and development. This study analyzed the amount of land cover change over time using multi-sensor information, focusing on the waterfront area of the Taehwa River. In order to apply high-accuracy aerial hyperspectral images, patterns with Field-spectral were reviewed and compared with time series Digital map. The hyperspectral image was set as 13 land cover grades, and the time series digital map was classified into 7 and the waterfront area was classified into 5-6 grades and analyzed. As a result of analysis of the change in land cover of the digital map from the 1990s to 2010, it was found that forest areas were rapidly decreasing and Farmland and grassland were becoming urban. As for the land cover change(2010~2019) in the waterfront area(set 500m) analyzed through hyperspectral images, it was found that Farmland(1.4㎢), Forest(1.0㎢), and grassland (0.8㎢) were converted into urbanized and dried areas, and urbanization was accelerating around the Taehwa River waterfront. Recently, a lot of research has been conducted on the production of land cover maps using high-precision satellite images and aerial hyperspectral images, so it is expected that more detailed and precise land cover maps can be produced and utilized.