• 제목/요약/키워드: Tactile sensors

검색결과 76건 처리시간 0.029초

수염 촉각 센서를 이용한 물체 위치 판별 그리고 이에 따른 로봇의 상대적 위치 제어 방법 (Tactile localization Using Whisker Tactile Sensors)

  • 김대은;랄프몰러
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1061-1062
    • /
    • 2008
  • Rodents demonstrate an outstanding capability for tactile perceptions using their whiskers. The mechanoreceptors in the whisker follicles are responsive to the deflections or vibrations of the whisker beams. It is believed that the sensor processing can determine the location of an object in touch, that is, the angular position and direction of the object. We designed artificial whiskers modelling the real whiskers and tested tactile localization. The robotic system needs to adjust its position against an object to help the shape recognition. We show a robotic adjustment of position based on tactile localization. The behaviour uses deflection curves of the whisker sensors for every sweep of whiskers and estimates the location of a target object.

  • PDF

힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계 (Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature)

  • 김종호;이상현;권휴상;박연규;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

황동단자에 대한 인쇄형 유연촉각센서의 출력 특성 (Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals)

  • 김진동;배용환;이인환;김호찬
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.65-70
    • /
    • 2020
  • While the demand for robots in the manufacturing industry has dramatically increased, the industrial robots' functionality is mainly determined by the effector attached to the end of their arms. They need a flexible gripping system that can act as a human hand and easily grasp a variety of objects, which requires resilient sensors. This study clarifies the electrical output characteristics of elastic tactile sensors according to contact terminals because the output characteristics of the tactile sensors vary greatly, depending on the contact material and the method of contact with the conductive wire. Our research considers the Three Roll Mill and Paste Mixer as the dispersion medium, and a nickel- and gold-plated brass electrode as the contact terminal.

광섬유 브래그 격자를 이용한 촉각센서용 유연 단위 힘 센서 개발 (Development flexible force sensor using fiber bragg grating)

  • 허진석;김만섭;이정주
    • 센서학회지
    • /
    • 제15권4호
    • /
    • pp.251-256
    • /
    • 2006
  • This paper describes the flexible force sensor using fiber Bragg grating (FBG) and silicone rubber for the tactile sensation to detect the distributed normal force. The newly designed FBG flexible force has simple structure and can be easily multiplexed with simple wiring compared with the other electric mechanical sensors. We designed the flexible silicone rubber transducer and found the optimum embedding position of FBG in the transducer using the finite element analysis. This flexible force sensor has good performance and is immunity to the electromagnetic field compared with any other kinds of small force sensors for tactile sensation.

광섬유 브래그 격자를 이용한 촉감감지용 단축 힘 센서 어레이 개발 (Development of Uniaxial Force Sensor Array for Tactile Sensation Using Fiber Bragg Gratings)

  • 허진석;이정주
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1160-1165
    • /
    • 2006
  • In this paper, the 2-dimensional uniaxial force sensors array is introduced to detect the distributed force using fiber Bragg gratings. Uniaxial force transducer was designed to avoid the chirping and micro bending which degrade the performance of the sensor. The Brags wavelength shift of the sensor was estimated using the finite element analysis. Using this uniaxial force sensor, the uniaxial force sensors array $(3{\times}3)$ was fabricated, and the Performance of this sensors array was evaluated. The Presented sensors may has very simple configuration and its wiring is very simple compared with any other force sensors arrays.

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young;Cho, Hanchul
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.145-150
    • /
    • 2022
  • The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작 (Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing)

  • 우상구;이인환;김호찬;이경창;조해용
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

3D 프린팅 방법으로 제작된 유연 촉각센서의 출력 특성 분석 (Output Characteristic of a Flexible Tactile Sensor Manufactured by 3D Printing Technique)

  • 진승호;이주경;이석;이경창
    • 한국정밀공학회지
    • /
    • 제31권2호
    • /
    • pp.149-156
    • /
    • 2014
  • Flexible tactile sensors can provide valuable feedback to intelligent robots about the environment. This is especially important when the robots, e.g., service robots, are sharing the workspace with human. This paper presents a flexible tactile sensor that was manufactured by direct writing technique, which is one of 3D printing method with multi-walled carbon nano-tubes. The signal processing system consists of two parts: analog circuits to amplify and filter the sensor output and digital signal processing algorithms to reduce undesired noise. Finally, experimental setup is implemented and evaluated to identify the characteristics of the flexible tactile sensor system. This paper showed that this type of sensors can detect the initiation and termination of contacts with appropriate signal processing.

Stereo-Vision-Based Human-Computer Interaction with Tactile Stimulation

  • Yong, Ho-Joong;Back, Jong-Won;Jang, Tae-Jeong
    • ETRI Journal
    • /
    • 제29권3호
    • /
    • pp.305-310
    • /
    • 2007
  • If a virtual object in a virtual environment represented by a stereo vision system could be touched by a user with some tactile feeling on his/her fingertip, the sense of reality would be heightened. To create a visual impression as if the user were directly pointing to a desired point on a virtual object with his/her own finger, we need to align virtual space coordinates and physical space coordinates. Also, if there is no tactile feeling when the user touches a virtual object, the virtual object would seem to be a ghost. Therefore, a haptic interface device is required to give some tactile sensation to the user. We have constructed such a human-computer interaction system in the form of a simple virtual reality game using a stereo vision system, a vibro-tactile device module, and two position/orientation sensors.

  • PDF