• Title/Summary/Keyword: Tactile device

Search Result 90, Processing Time 0.032 seconds

Typology of mobile marketing and fashion application usage motives (모바일 마케팅의 유형화와 패션 어플리케이션 이용 동기)

  • Shin, Hyunju;Lee, Kyu-Hye
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.4
    • /
    • pp.483-497
    • /
    • 2016
  • The importance of marketing on mobile platforms as well as mobile commerce is increasing dramatically in fashion industry. The purpose of this study was to categorize mobile fashion marketing strategies and to examine application usage motivations that influence brand attitude, purchase decisions, and post-purchase evaluation. Qualitative research methods, in particular focus-groups and in-depth interviews, were conducted to examine the typology of mobile marketing and fashion application usage motivations. Then, a modified survey was used to quantitatively examine what content consumers expect from fashion applications. Results of the qualitative study indicated that consumers perceive sensory (visual, tactile, auditory), relationship, information and practical marketing strategies through motives. Survey result from 229 consumers revealed four fashion application usage motives: sensory, relationship, information and practical. Based on these motives consumers were segmented into three groups: the experience/relationship-conscious, the product information-conscious, and the lifestyle information-conscious. The product information-conscious group showed higher level of monthly income and clothing expenses but lower level of mobile device usages. Lifestyle information-conscious group and experience/relationship-conscious group had higher level of attitude, and post-purchase evaluation. It was experience-relationship conscious consumers who spent more time in mobile use. This study shows a better understanding of mobile marketing environment of fashion applications.

Technological Trends in Sensory Substitution (감각치환 기술 동향)

  • Moon, K.D.;Kim, M.S.;Jeong, C.Y.;Park, Y.K.;Shin, S.Y.;Oh, C.M.;Park, J.S.;Shin, H.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.65-75
    • /
    • 2019
  • Sensory substitution involves mapping the characteristics of one sensory modality to the stimuli of another sensory modality. In general, when a person is visually impaired or deaf, they do not actually lose their ability to see or hear completely; however, they only lose their ability to transmit sensory signals from the periphery to the brain. It has been experimentally proven that a person who has lost the ability to retrieve data from the retina can still visualize subjective images by using data transferred from other sensory modalities such as tactile or auditory modalities. This is because vision processing pathways are still intact in most cases. Therefore, sensory substitution uses human perception and the plasticity of the human brain to transmit sensory signals through pathways that have not been lost. In this study, we analyze the characteristics and problems of various devices used for sensory substitution and summarize the recent technological trends in these devices.

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon;Hyeongho Min;Jihun Son;Tae Kon Ahn;Changhyun Pang
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2024
  • Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

VR Threat Analysis for Information Assurance of VR Device and Game System (VR 기기와 게임 시스템의 정보보증을 위한 VR 위협 분석)

  • Kang, Tae Un;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.437-447
    • /
    • 2018
  • Virtual Reality (VR) is becoming a new standard in the game industry. PokeMon GO is a representative example of VR technology. The day after the launch of PokeMon Go in the U.S, It has achieved the highest number of iOS App Store downloads. This is an example of the power of VR. VR comprises gyroscopes, acceleration, tactile sensors, and so on. This allow users could be immersed in the game. As new technologies emerge, new and different threats are created. So we need to research the security of VR technology and game system. In this paper, we conduct a threat analysis for information assurance of VR device (Oculus Rift) and game system (Quake). We systematically analyze the threats (STRIDE, attack library, and attack tree). We propose security measures through DREAD. In addition, we use Visual Code Grepper (VCG) tool to find out logic errors and vulnerable functions in source code, and propose a method to solve them.

Analysis on the Characteristics and Product Trend of Wearable Smart Actuator (웨어러블 스마트 액추에이터의 특성과 제품동향 분석)

  • Lee, Hyewon;Suh, Sungeun;Roh, Jung-Sim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1022-1038
    • /
    • 2017
  • Wearable smart products contributed to expand the concept of modern clothing in terms of closer communication between wearers and the surrounding environment. This study investigated the concept of wearable smart actuators and characteristics of actuating feedback. The representative product development trends over the past 10 years are examined based on the method of actuating feedback. A first keyword search from Naver and Google reused to select the final 58 products based on the second key keyword actuating feedback. The wearable smart actuator system works in a similar way to a human body system such as those of the information processing process. Actuating feedback is delivered directly to the user as the last signal of the system, which has visual, auditory and tactile feedback. It works in complex at the device to be delivered to the user. Actuator feedback is divided into three types of active and passive, depending on the user situation, the overall purpose of the product, the collected information, and the device dependency. Active actuating feedback determines and actuates the situation on behalf of the user when the user is in an emergency or a disability situation. Passive actuating feedback plays a role in environmental monitoring to help in a healthy daily life.

Effect of Tactile Feedback on Trunk Posture and EMG Activity in People With Postural Kyphosis During VDT Work

  • Park, Joo-hee;Kang, Sun-young;Cynn, Heon-seock;Jeon, Hye-seon
    • Physical Therapy Korea
    • /
    • v.23 no.3
    • /
    • pp.48-56
    • /
    • 2016
  • Background: Recently, there has been an emphasis on the use of interventions with biofeedback information for the maintenance or correction of posture. Objects: This study assessed the change of trunk posture and trunk muscle activation when people exhibiting postural kyphosis performed visual display terminal work with or without a contact feedback device (CFD). Methods: Eighteen right-handed individuals were recruited. Thoracic angle and right thoracic erector spinae (TES) muscle amplitude were analyzed. There were two sessions in these experiments. The control session involved 16 minutes of typing without a CFD, and the CFD session involved 16 minutes of typing with a CFD. The visual analog scale score was analyzed with a paired t-test, and the kinematic and electromyography data were analyzed through two-way repeated analysis of variance. Results: The paired t-tests revealed that subjects had significantly less pain after the CFD sessions than after the control sessions (p<.05). Significant main effects by session and by time were observed in the thoracic kyphosis angle (p<.05). There was a significant session${\times}$time interaction for TES amplitude (p<.05), along with significant main effects by session and by time (p<.05). Conclusion: The CFD caused people with postural kyphosis to straighten and to activate their TES continuously, even though they were habituated to bend their bodies forward. Therefore, the CFD was a beneficial treatment tool.

A Tactilely Transparent Soft Glove with High Grasping Force (높은 파지력을 가지며 촉감을 전달할 수 있는 유연한 글러브)

  • Jeong, Yong-Jun;Kim, Jong-In;Jeon, Hyeong-Seok;Lee, Deok-Won;Kim, Yong-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1011-1020
    • /
    • 2016
  • This paper introduces a tactilely transparent soft glove composed of soft materials and flexible structures. Although it is hard to achieve a high grasping force with conventional grip-assist gloves made from soft material, the proposed glove can exert a high force by using a novel structure. This structure has a triangular shape composed of flexible structural frames, soft fabric, and belts. It can produce grip-assist moment compliantly without harmful force or misalignment with the human fingers. The whole finger part that comes into contact with objects is made of thin and soft fabric in order to facilitate sensation transference. The proposed tactilely transparent soft glove enables the user to manipulate various objects owing to both the softness and high grasping force; it helps lifting heavy weight objects as well as permitting delicate tactile feeling on the palm and fingers. The proposed concept was applied to a two-finger grip-assist device for validation. In addition, the experimental results regarding grasping objects, fingertip force, and grasping force are presented.

A Study on the Implementation of Nanta Music using a Haptic Device in Virtual Reality (가상현실에서 Haptic 디바이스를 활용한 난타 음악 구현에 관한 연구)

  • Ko, Young-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This paper investigates the possibility of exploiting haptic force-feedback technology for interacting with Nanta music. We use VR technologies including touch processing technologies and haptic devices to offer touch of cylinder objects and cup object to users. Haptic device is used to implement touch model in VR space. Matlab/Simulink and proSENCE Virtual Touch Toolbox of Handshake Inc. for experiment, are used as programing tools. Function needed to describe the movement of x, y, and z axis respectively are applied to delineate the natural movement of water in cup object modeled with 3D. A certain amount of water in cup object has the difference of sounds. In experiment, to perceive the appearance of 3D object by touch and to feel the tactile by touch are conducted with the effect of sound on Haptic perception. We also verify that it is possible to develop games or contents in VR space by using point.

Development of the Balance Chair for Improving Postural Control Ability & Pelvic Correction (골반교정 및 자세균형능력 증진을 위한 균형의자 개발)

  • Oh, Seung-Yong;Shin, Sun-Hye;Kang, Seung-Rok;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • The purpose of this study was to develop a balance chair for improving pelvic correction and postural balance through postural balance training using tactile feedback by a vibration motor provided in real time according to the user's attitude. We built a body frame using mono cast(MC) Nylon, Touch thin film transistor(TFT) for user interface, a main control module using Arduino, a 9-axis acceleration sensor for user's posture determination, and a vibration module for tactile feedback. The prototype of the Balance Chair which surrounds the outside was made with cushion for sitting conformability. In order to verify the effectiveness of the postural balance training system using the built prototype, the muscle activity (% MVIC) of the left and right iliocostalis lumborum those are the main muscles of the spinal movement was measured with ten female subjects. And the balance ability before and after training was measured using Spine Balance 3D, a posture balance ability evaluation device. The muscular activities of the left and right iliocostalis lumborum showed the balance activation according to vibration feedback during exercise protocol and postural balance improved after balance exercise training using balance chair. This study could be apply to use the fundamental research for developing the various postural balance product.

An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume Conservation

  • Zhang, Xiaorui;Wu, Hailun;Sun, Wei;Yuan, Chengsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1738-1756
    • /
    • 2020
  • To improve the accuracy and realism of the virtual surgical simulation system, this paper proposes an optimized mass-spring model with shape restoration ability based on volume conservation to simulate soft tissue deformation. The proposed method constructs a soft tissue surface model that adopts a new flexion spring for resisting bending and incorporates it into the mass-spring model (MSM) to restore the original shape. Then, we employ the particle swarm optimization algorithm to achieve the optimal solution of the model parameters. Besides, the volume conservation constraint is applied to the position-based dynamics (PBD) approach to maintain the volume of the deformable object for constructing the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system on the PHANTOM OMNI force tactile interaction device to realize the deformation simulation of the virtual liver. Experimental results show that the proposed model has a good shape restoration ability and incompressibility, which can enhance the deformation accuracy and interactive realism.