• 제목/요약/키워드: Tactical Diameter

검색결과 28건 처리시간 0.023초

구속모형실험을 통한 부선의 조종성능 추정 (Study on the Maneuverability of Barge by Captive Model Test)

  • 윤근항;김연규
    • 한국항해항만학회지
    • /
    • 제36권8호
    • /
    • pp.613-618
    • /
    • 2012
  • 부선이 선미 예인되는 상황에서의 예부선 통합시뮬레이션을 수행하기 위하여, 본 연구에서는 부선 단독 조종성능 추정을 위한 구속모형실험을 수행하였다. 구속모형실험결과로부터 부선 실선의 저항성능을 추정하였고, 도출된 유체력 미계수를 이용하여 선회시뮬레이션을 수행하였다. 부선의 선회시뮬레이션을 위해 부선에 작용하는 예인력의 힘과 방향을 단순히 모델링하고, 예인줄 방향각 변화에 따른 선회시뮬레이션 결과 비교와 실선시운전시험결과와의 선회직경 비교를 통하여 수학모델을 검증하였다. 그 결과 예인줄 방향각이 커질수록 선회직경이 작아지는 정성적인 경향을 확인하였고, 실선시운전결과와 비교 시 배수량 차이 등에 의하여 선회직경이 작게 추정되는 결과를 확인하였다.

소형 전술급 무인항공기 프로펠러의 이산소음 수치해석 (Discrete Noise Prediction of Small-Scale Propeller for a Tactical Unmanned Aerial Vehicle)

  • 유기완
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.790-798
    • /
    • 2018
  • Discrete noise signals from a small scale tactical unmanned aerial vehicle(UAV) propeller were predicted numerically using time domain approach. Two-bladed 29 inch propeller in diameter and 150 kgf in gross weight were used for main parameters of the UAV based on the actual size of the similar scale vehicle. Panel method and Farassat formula A1 were adopted for aerodynamic and aeroacoustic analysis respectively. Time domain signals of both thickness and loading noises were transformed into frequency domain to analyze the discrete noise characteristics. Directivity pattern in a plane perpendicular to the rotating disc plane and attenuation of noise intensity according to double distance were also presented.

선미형상을 고려한 천수역에서의 조종성능에 관한 연구 (A Study on the Manoeuvrability as Function of Stern Hull Form in Shallow Water)

  • 이성욱
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.552-557
    • /
    • 2015
  • 본 연구에서는 선미형상을 고려한 조종성능을 심수역 뿐만 아니라 천수역에 대해서 수치 시뮬레이션을 통해 검토하였다. 선미형상을 나타내는 파라메터 중 $C_{wa}$를 미소(${\pm}2%$)하게 변화시킴으로써 각 수역에서의 침로안정성, 선회 및 지그재그 성능이 어떤 변화를 보이고 그 경향이 어떻게 변화하는 지를 검토하였다. 선박의 조종성능 관점에서 흘수 대 수심의 비(=d/H)가 0.5 부근에서의 조종성에 큰 변화를 가져오는 중요 지점임을 알 수 있었고, 비대선(VLCC, 탱커 등)과 세장선(컨테이너)의 경우 선미형상의 변화에 따라 조종성능의 변화 정도가 많은 차이를 가질 수 있음을 알 수 있었다. 또한, $C_{wa}$를 감소(U형에 근접)시키면 선회운동에 있어서 advance 및 tactical diameter가 증가하고, 지그재그 운동에서는 track reach는 증가하지만 각 overshoot angle들은 감소한다. 이와 반대로, $C_{wa}$를 증가(V형에 근접)시키면 선회운동에 있어서 advance 및 tactical diameter는 감소, 지그재그 운동에서는 track reach는 감소, 각 overshoot angle 들은 증가함을 알 수 있었다.

RIB형 표적정의 수평면 조종운동 간략모델 (A Simplified Horizontal Maneuvering Model of a RIB-Type Target Ship)

  • 윤현규;여동진;황태현;윤근항;이창민
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.572-578
    • /
    • 2007
  • A Rigid Inflatable Boat (RIB) is now widely used for commercial and military purpose. In this paper, it is supposed that seven-meter-class RIB be used as an unmanned target ship for naval training. In order to develop many tactical maneuvering patterns of a target ship, a simple horizontal maneuvering model of a RIB is needed. Therefore, models of speed and yaw rate are constructed as the first-order differential equations based on Lewandowski#s empirical formula for steady turning circle diameter of a conventional planning hull. Some parameters in the models are determined using the results of sea trial tests. Finally, proposed models are validated through the comparison of the simulation result with the sea trial result for a specific scenario. Even though a simple model does not represent the horizontal motion of a RIB precisely, however, it can be used enough to develop tactical trajectory patterns.

닻 운용 시뮬레이션에 의한 선체운동 제어에 관한 연구 (A Study on the Control of Ship Maneuvering by the Simulation of Anchor Dredging)

  • 윤순동
    • 해양환경안전학회지
    • /
    • 제8권2호
    • /
    • pp.9-15
    • /
    • 2002
  • Ship operators use anchor dredging for the collision avoidance or safety of ship handling in a harbour or narrow channel. This paper clarifies the technique of the anchor dredging known as a common sense for. the seafarers A mathematical model at low speed range is established for the estimation of ship motion under the assumed environment, simulate the advance speed , and turning ability under the anchor dredging or not. The results shows good agreement with the conventional seamanship and their experiences as follows. Ahead speed used the anchor dredging is slower(speed reduction ratio:40%) than the normal ahead speed and the stopping distance is shorter (distance reduction ratio:40%)than the normal ahead distance without the anchor dredging.. Turning speed used anchor dredging is slower(speed reduction ratio:72%)than the normal ahead speed and the tactical diameter is shorter(distance reduction ratio:24%)than the diameter by the normal turning without the anchor dredging.

  • PDF

닻을 운용한 선체운동 제어 (A Study on the Control of Ship Motion using the Anchor Dredging)

  • 윤순동
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2002년도 추계학술발표회
    • /
    • pp.127-134
    • /
    • 2002
  • Ship operators are used to dredge anchor for the collision avoidance or safety of ship handling in a harbour or narrow channel. This paper clarifies the technique using tile anchor dredging known as a common sense for the seafarers. A mathematical model at low speed range has been established for the estimation of ship motion under the assumed environment , simulate the advance speed , and turning ability under the anchor dredging or not. The results shows good agreement with the conventional seamanship and their experiences as follows. Ahead speed used the anchor dredging is slower(speed reduction ratio:40%) than the normal ahead speed and the stopping distance is shorter (distance reduction ratio:40%)than the normal ahead distance without the anchor dredging. Turning speed used anchor dredging is slower(speed reduction ratio:72%)than the normal ahead speed and the tactical diameter is shorter(distance reduction ratio:24%)than the diameter by the normal turning without the anchor dredging.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

선속이 선회권에 미치는 영향에 관한 연구 (The Effect of the Speed of a Ship on Her Turning Circle)

  • 김기윤
    • 수산해양기술연구
    • /
    • 제35권3호
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions

  • Zaky, Mochammad;Yasukawa, Hironori
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.53-65
    • /
    • 2018
  • The load condition significantly influences ship maneuverability in calm water. In this research, the effect of the load condition on turning performance of a very large crude oil carrier (VLCC) sailing in adverse weather conditions is investigated by an MMG-based maneuvering simulation method. The relative drift direction of the ship in turning to the wave direction is $20^{\circ}-30^{\circ}$ in ballast load condition (NB) and full load condition (DF) with a rudder angle $35^{\circ}$ and almost constant for any wind (wave) directions. The drifting displacement in turning under NB becomes larger than that under DF at the same environmental condition. Advance $A_d$ and tactical diameter $D_t$ become significantly small with an increasing Beaufort scale in head wind and waves when approaching, although $A_d$ and $D_t$ are almost constant in following wind and waves. In beam wind and waves, the tendency depends on the plus and minus of the rudder angle.

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.