• Title/Summary/Keyword: Tabular structure

Search Result 15, Processing Time 0.02 seconds

Transmission Electron Microscope Sampling Method for Three-Dimensional Structure Analysis of Two-Dimensional Soft Materials

  • Lee, Sang-Gil;Lee, Ji-Hyun;Yoo, Seung Jo;Datta, Suvo Jit;Hwang, In-Chul;Yoon, Kyung-Byung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.203-207
    • /
    • 2015
  • Sample preparation is very important for crystal structure analysis of novel nanostructured materials in electron microscopy. Generally, a grid dispersion method has been used as transmission electron microscope (TEM) sampling method of nano-powder samples. However, it is difficult to obtain the cross-sectional information for the tabular-structured materials. In order to solve this problem, we have attempted a new sample preparation method using focused ion beam. Base on this approach, it was possible to successfully obtain the electron diffraction patterns and high-resolution TEM images of the cross-section of tabular structure. Finally, we were able to obtain three-dimensional crystallographic information of novel zeolite nano-crystal of the tabular morphology by applying the new sample preparation technique.

Korean TableQA: Structured data question answering based on span prediction style with S3-NET

  • Park, Cheoneum;Kim, Myungji;Park, Soyoon;Lim, Seungyoung;Lee, Jooyoul;Lee, Changki
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.899-911
    • /
    • 2020
  • The data in tables are accurate and rich in information, which facilitates the performance of information extraction and question answering (QA) tasks. TableQA, which is based on tables, solves problems by understanding the table structure and searching for answers to questions. In this paper, we introduce both novice and intermediate Korean TableQA tasks that involve deducing the answer to a question from structured tabular data and using it to build a question answering pair. To solve Korean TableQA tasks, we use S3-NET, which has shown a good performance in machine reading comprehension (MRC), and propose a method of converting structured tabular data into a record format suitable for MRC. Our experimental results show that the proposed method outperforms a baseline in both the novice task (exact match (EM) 96.48% and F1 97.06%) and intermediate task (EM 99.30% and F1 99.55%).

Growth of $ZrO_2$ Single Crystal Using Flux Method (융제법의 의한 $ZrO_2$ 단결정 성장)

  • 이희훈;오근호;이종근;신건철
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.3-8
    • /
    • 1985
  • $ZrO_2$ single crystals were grown by slow cooling flux method using Borax $(Na_2B_4O_7)$ and KF as flux agent. The morphology of grown crystals was observed under a petrographic microscope. And the results obtained from grow crystals were as follows : 1. $ZrO_2$ crystals grown in the present work are morphologically divided into two shapes ; tabular and den-dritic crystals. 2. The maximum size of the crystals grown reaches to $4{\times}15{\times}2mm$ on edge into length at $ZrO_2$ 15mole% Borax 50mole% and KF 35mole% 3. $ZrO_2$ single crystals grown by flux method have monoclinc structure. 4. The content of KF as flux agents was limited by 60mole% KF. Since alumina crucible was heavily damaged by increasing KF content.

  • PDF

SSR-Primer Generator: A Tool for Finding Simple Sequence Repeats and Designing SSR-Primers

  • Hong, Chang-Pyo;Choi, Su-Ryun;Lim, Yong-Pyo
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.189-193
    • /
    • 2011
  • Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator " for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.

Controlling of ring based structure of rotating FG shell: Frequency distribution

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • Based on novel Galerkin's technique, the theoretical study gives a prediction to estimate the vibrations of FG rotating cylindrical shell. Terms of ring supports have been introduced by a polynomial function. Three different laws of volume fraction are utilized for the vibration of cylindrical shells. Variation frequencies with the locations of ring supports have been analyzed and these ring supports are placed round the circumferential direction. The base of this approach is an approximate estimation of eigenvalues of proper functions which are the results of solutions of vibrating equation. Each longitudinal wave number corresponds to a particular boundary condition. The results are given in tabular and graphical forms. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. There is a new form of frequencies is obtained for different positions of ring supports, which is bell shaped. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases.

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

  • Hamza Hameed;Sadia Munir;F.D. Zaman
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.19-40
    • /
    • 2024
  • The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth-order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first-order correction terms, are also computed and displayed in tabular forms.

A Study on Mechanical Properties Improvement of Halogen-free Flame Retardant Compounds by Nanoclay Addition (나노클레이 첨가에 따른 할로겐프리 난연컴파운드의 기계적 특성에 관한 연구)

  • Hwang, Chan-Yun;Yang, Jong-Seok;Sung, Baek-Yong;Kim, Ji-Yeon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.126-130
    • /
    • 2015
  • In this study, some materials are organized and experimented with variables to obtain the optimum mix proportion for the mechanical property of halogen free flame resistance compound with varying addition of nano clay. Tensile strength, density and stiffness are tested in the room temperature. In this study, unlike existing layered structure, nano clay with tabular structure is used and sufficient stiffness, strength, thermal stability and gas block capability can be achieved with small amount of addition. Tensile strength and elongation test show high rupture strength only in specimens with compatibilizing agents while density test shows average measurement in all the specimens except T-9. It was confirmed that the measurement value according to the additives in compatibilizing agent or in nano clay of hardness test represents similarly.

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.

Deformational characteristics of a high-vacuum insulation panel

  • Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.245-262
    • /
    • 2000
  • The objective of this study is to analyze the deformational characteristics of a high-vacuum insulation panel that is evacuated to eliminate significant gas-phase conductance through its thickness. The panel is composed of a metal envelope and low thermal conductance spacers. The problem is very challenging because several nonlinearities are involved concurrently. Not only are various finite element models such as triangular, rectangular, beam and circular plate models used to simulate the panel, but also several finite element programs are used to solve the problem based on the characteristics of the finite element model. The numerical results indicate that the effect of the diameter of the spacer on the vertical deformation of the plate panel is negligibly small. The parameter that mainly influences the maximum sag is the spacing between the spacers. The maximum vertical deformation of the panel can be predicted for a practical range of the spacing between the spacers and the thickness of the plate. Compared with the numerical results obtained by the finite element models and the experimental tests, they have a good agreement. The results are represented in both tabular and graphical forms. In order to make the results useful, a curve fitting technique has been applied to predict the maximum deformation of the panel with various parameters. Moreover, the panel was suggested to be a "smart" structure based on thermal effect.