• Title/Summary/Keyword: Table Position Control

Search Result 135, Processing Time 0.026 seconds

A Position Sensorless Control System of SRM using Neural Network (신경회로망을 이용한 위치센서 없는 스위치드 릴럭턴스 전동기의 제어시스템)

  • 김민회;백원식;이상석;박찬규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • This paper presents a position sensorless control system of Switched Reluctance Motor (SRM) using neural network. The control of SRM depends on the commutation of the stator phases in synchronism with the rotor position. The position sensing requirement increases the overall cost and complexity. In this paper, the current-flux-rotor position lookup table based position sensorless operation of SRM is presented. Neural network is used to construct the current-flux-rotor position lookup table, and is trained by sufficient experimental data. Experimental results for a 1-hp SRM is presented for the verification of the proposed sensorless algorithm.

A High Speed md High Precision Position Control of a XY Table using a VSC (가변구조 제어기를 이용한 XY 테이블의 고속 고정도 위치제어)

  • 이성훈;김가규;최봉열
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.813-816
    • /
    • 1999
  • In this paper is Proposed a VSC(variable structure controller) for a high-speed and high-precision position control of a XY Table, which is based on the PI type reaching mode. Also the comparative study between the proposed method and the conventional PID controller is presented as well. Designed and tuned under repeated experiments, the proposed method showed a better reasonable performance than PID controller in the aspect of tracking error.

  • PDF

Development of landmark tracking system (표식 인식 시스템의 개발)

  • 권승만;이상룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.642-645
    • /
    • 1991
  • This paper presents the results of research on hardware and software of the landmark tracking system to the positions of moving robot in real time. The landmark tracking system is composed of CCD camera, landmark, strobo system and image processing board. The algorithm calculates the position and direction by using the coordinate transformation fomula after calculating the centroid and rotation angle of landmark at fixed position using the image data. The experiment is performed with landmark tracking system is loaded on xyz-table. XYZ-table is used for identifying the true position in our experiment. The results shows that this system has high performance with maxima error of .+-.1 pixels.

  • PDF

Precision Position Control for PCB Screen Printer Using Image Processing (화상처리를 이용한 PCB 스크린 인쇄기의 정밀위치제어)

  • 이근유;부이트롱휴;김동규;박순실;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.295-295
    • /
    • 2000
  • In this paper, the measurement algorithm of PCB alignment error is developed using image processing. The X-Y-$\theta$ table correcting PCB alignment error is driven by drive module based on microprocessor according to calculation results obtained through image processing procedure. In order to recognize the X-Y-$\theta$ position errors, two fiducial points are marked on PCB and two cameras of ultraviolet rays types are used for detection of the points to capture exactly fiducial points under disturbance of illumination change. Through application for a practical screen printer, the precision control using the developed position control system can be realized about 2.5${\mu}{\textrm}{m}$ in table moving range and 8${\mu}{\textrm}{m}$ in camera processing precision.

  • PDF

Position Control of Stepping Motor using Torque Angle Control Scheme (토크 각도제어기법을 적용한 스테핑 전동기의 위치제어)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • This paper presents high speed position controller using stepping motor. The proposed position controller has close loop and open loop mode. In the high speed region, torque angle which is controlled by PI controller and memory based look-up table, is used to keep the reference position. The memory based look-up table produces a torque angle according to motor speed, and the PI controller can compensate the torque angle error. So, the fast dynamic response can be expected in the same position error. The open loop control mode which is divided by 3-modes control the actual position in the low speed and small position error. Each open loop modes are designed to reduce position error and dynamic brake in the stop command. The proposed position control scheme is verified by the practical stepping motor.

Fuzzy control of a robot manipulator in Cartesian space (Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어)

  • 곽희성;강철구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

Digital Position Control of BLDD Motor using Fuzzy Speed Controller (퍼지 속도 제어기를 이용한 BLDD 모타의 이산 위치 제어)

  • Ko, Jong-Sun;Hwang, Jae-Gyu;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.892-894
    • /
    • 1993
  • In this paper, a new control for the robust position control of a brushless direct drive(BLDD) motor using fuzzy logic controller(FLC) is presented. The integral-proportional(IP) position with speed FLC is employed to obtain the robust BLDD motor system, which is approximately linearized using the field-orientation method for an AC servo. The speed FLC for a BLDD motor has the two rule tables. One is the coarse rule table for the transient state and another is the fine rule table for the steady state. The overall system is controlled by using the microprossor in IBMPC 486 and the the robustness is also obtained.

  • PDF

Detection of Absolute Position for Magneto-Optical Encoder Using Linear Table Compensation (선형 테이블 보상법을 이용한 마그네틱-옵티컬 엔코더의 절대 위치 검출에 관한 연구)

  • Kim, Seul Ki;Kim, Hyeong Jun;Lee, Suk;Park, Sung Hyun;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2016
  • This paper presents the development of a magneto-optical encoder for higher precision and smaller size. In general, optical encoders can have very high precision based on the position information of the slate, while their sizes tend to be larger due to the presence of complex and large components, such as an optical module. In contrast, magnetic encoders have exactly the opposite characteristics, i.e., small size and low precision. In order to achieve encoder features encompassing the advantages of both optical and magnetic encoders, i.e., high precision and small size, we designed a magneto-optical encoder and developed a method to detect absolute position, by compensating for the error of the hall sensor using the linear table compensation method. The performance of the magneto-optical encoder was evaluated through an experimental testbed.

A Pantographic Study on the Mandibular Movements in Patients with Temporomandibular Joint Sounds (Pantograph를 이용한 악관절잡음자의 하악운동에 관한 연구)

  • Lee, Pung Ho;Han, Kyung Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.12 no.1
    • /
    • pp.85-93
    • /
    • 1987
  • The author studied on the effect of TMJ sounds to the patterns and ranges of mandibular border movements in horizontal plane with Pantograph (Denar Corp.). For study, 19 patients with TMJ sounds only and 16 students with no TM disorder were selected and classified as experimental group and control group, respectively. The subject performed right lateral movement, left lateral movement, and forward movement. Each movement were performed 3 times and the movement trajectory obtained with mechanical pantograph were observed for accordance of centric relation position, reproducibility and/or restriction of lateral movement paths, deviation of protrusive path in anterior table, restriction of protrusive condylar movement path in posterior horizontal table, presence of Fisher angle in posterior vertical table. And pantographic reproducibility Index (PRI) were obtained with pantronic by the same movement method as in the mechanical pantograph record. The obtained results were as follows : 1. In experimental group, PRI scores in those who show accordance of centric relation position were 14.4, and were 26.53 in those who did not show accordance of centric relation position. However, the PRI scores of the two subgroups show no statistically significant difference in control group. Therefore, in experimental group, the capability of accordance of centric relation position affected largely the PRI scores than in control group. 2. Deviation of protrusive path was opposite to the affected side in experimental group, and was left side in control group. 3. Restriction side of condylar movement in protrusion was ipsilateral to the deviation side in experimental group, but in control group, restriction side was not related to the deviation side. 4. PRI scores in experimental group were 23.2 (moderate dysfunction category), and in control group, were 17.8 (slight dysfunction category). The PRI scores in control group, however, implies that the evaluation of temporomandibular disorders by the PRI scores only may be unreasonable.

  • PDF

Parameter Identification and Control for Linear Compressors (리니어 컴프레서를 위한 파라미터 추정 및 제어)

  • Kim, Gyu-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.243-245
    • /
    • 2006
  • A closed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

  • PDF