• Title/Summary/Keyword: TaN film

Search Result 137, Processing Time 0.034 seconds

Development of Thin-Film Type Strain Gauges for High-Temperature Applications (고온용 박막형 스트레인 게이지 개발)

  • Choi, Sung-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1596-1598
    • /
    • 2002
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-($4{\sim}16%$)$N_2$). These films were annealed for 1 hour in $2{\times}10^{-6}$ Torr vacuum furnace range $500{\sim}1000^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition($900^{\circ}C$, 1 hr.) in 8% $N_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, ${\rho}$=768.93 ${\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR = -84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF = 4.12.

  • PDF

The Fabrication of a Micromachined Ceramic Thin-Film Pressure Sensor with High Overpressure Tolerance (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작)

  • Lim, Byoung-Kwon;Choi, Sung-Kyu;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.731-734
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097{\sim}1.21mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Diamond Film Deposition on Ceramic Substrates by Hot-Filament CVD and Evaluation of the Adhesion (HF-CVD법에 의한 세라믹스 기판에의 다이아몬드박막 합성과 그 밀착성 평가)

  • Sin, Sun-Gi;Matsubara, Hideaki
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.575-580
    • /
    • 2000
  • Diamond thin films were deposited on $Si_3N_4$, SiC, TiC and $Al_2O_3$, substrates by the CVD method using Ta(TaC)Filament, and the appearance of the diamond films and their adhesion properties were examined by SEM, optical microscopy, indentation test and compression topple test. Diamond films were deposited at lower $CH_4$ concentration than 5%$CH_4$ for all kinds of the substrate material, but graphitic(amorphous)carbon was observed at 10%$CH_4$. The diamond film of about $12\mu\textrm{m}$ thickness on WC substrate partly peeled off, but the film on $Si_3N_4$ substrate held good adhesion. The indentation test showed that roughly ground surface was very effective for adhesion of diamond films to substrate. The topple test revealed that film thickness was an important factor governing the adhesion of the diamond film.

  • PDF

Characteristics of TaN Film as to Cu Barrier by PAALD Method (PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성)

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.5-8
    • /
    • 2003
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and $SiO_2$ by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and NH$_3$ as precursors. The TaN films were deposited at $250^{\circ}C$ by both method. The growth rates of TaN films were 0.8${\AA}$/cycle for PAALD and 0.75${\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w -1.8:0.12 mm but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was 11g/cmand one for thermal ALD TaN was 8.3g/$cm^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200 nm)/TaN(10 nm)/$SiO_2$(85 nm)/ Si structure was shown at temperature above $700^{\circ}C$ by XRD, Cu etch pit analysis.

  • PDF

The Effects of Electrode Materials on the Electrical Properties of $Ta_2O_5$ Thin Film for DRAM Capacitor (DRAM 커패시터용 $Ta_2O_5$ 박막의 전기적 특성에 미치는 전극의존성)

  • Kim, Yeong-Wook;Gwon, Gi-Won;Ha, Jeong-Min;Kang, Chang-Seog;Seon, Yong-Bin;Kim, Yeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.229-235
    • /
    • 1991
  • A new electrode material for $Ta_2O_5$ capacitor was developed to obtain both high dielectric constant and improved electrical properties for use in DRAM. High leakage current and low breakdown field of as-deposited $Ta_2O_5$ film on Si is due to the reduction of $Ta_2O_5$ by silicon at $Ta_2O_5$/electrode interface. $Dry-O_2$ anneal improves the electrical properties of $Ta_2O_5$ capacitor with Si electrode, but it thickens the interfacial oxide and lowers the dielectric constant, subsequently. $Ta_2O_5$ capacitor with TiN exectrode shows better electrical properties and higher dielectric constant than post heat treated $Ta_2O_5$ film on Si. No interfacial oxide layer at $Ta_2O_5$/TiN interface suggests that there\`s no Interaction between $Ta_2O_5$ and electrode. TiN is a adequate electrode material for $Ta_2O_5$ capacitor.

  • PDF

Crystalline Structure and Cu Diffusion Barrier Property of Ta-Si-N Films (Ta-Si-N박막의 조성에 따른 결정구조 및 구리 확산 방지 특성 연구)

  • Jung, Byoung-Hyo;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.95-99
    • /
    • 2011
  • The microstructure and Cu diffusion barrier property of Ta-Si-N films for various Si and N compositions were studied. Ta-Si-N films of a wide range of compositions (Si: 0~30 at.%, N: 0~55 at.%) were deposited by DC magnetron reactive sputtering of Ta and Si targets. Deposition rates of Ta and Si films as a function of DC target current density for various $N_2/(Ar+N_2)$ flow rate ratios were investigated. The composition of Ta-Si-N films was examined by wavelength dispersive spectroscopy (WDS). The variation of the microstructure of Ta-Si-N films with Si and N composition was examined by X-ray diffraction (XRD). The degree of crystallinity of Ta-Si-N films decreased with increasing Si and N composition. The Cu diffusion barrier property of Ta-Si-N films with more than sixty compositions was investigated. The Cu(100 nm)/Ta-Si-N(30 nm)/Si structure was used to investigate the Cu diffusion barrier property of Ta-Si-N films. The microstructure of all Cu/Ta-Si-N/Si structures after heat treatment for 1 hour at various temperatures was examined by XRD. A contour map that shows the diffusion barrier failure temperature for Cu as a function of Si and N composition was completed. At Si compositions ranging from 0 to 15 at.%, the Cu diffusion barrier property was best when the composition ratio of Ta + Si and N was almost identical.

X-ray Scattering Study of Reactive Sputtered Ta-N/Ta/Si(001)Film as a Barrier Metal for Cu Interconnection (구리배선용 베리어메탈로 쓰이는 Ta-N/Ta/Si(001)박막에 관한 X-선 산란연구)

  • Kim, Sang-Soo;Kang, Hyon-Chol;Noh, Do-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.79-83
    • /
    • 2001
  • In order to compare the barrier properties of Ta-N/Si(001) with those of Ta-N/Ta/Si(001), we studied structural properties of films grown by RF magnetron sputtering with various $Ar/N_2$ ratios. To evaluate the barrier properties, the samples were annealed in a vacuum chamber. Ex-situ x-ray scattering measurements were done using an in-house x-ray system. With increasing nitrogen ratio in Ta-N/Si(001), the barrier property of Ta-N/Si(001) was enhanced, finally failed at $750^{\circ}C$ due to the crystallization and silicide formation. Compared with Ta-N/Si(001), Ta-N/Ta/Si(001) forms silicides at $650^{\circ}C$. However it does not crystallize even at $750^{\circ}C$. With increasing nitrogen composition in Ta-N/Ta/Si(001), the formation of tantalum silicide was reduced and the surface roughness was improved. To observe the surface morphology of Ta-N/Ta/Si(001) during annealing, we performed an in-situ x-ray scattering experiment using synchrotron radiation of the 5C2 at Pohang Light Source(PLS). Addition of Ta layer between Ta-N and Si(001) improved the surface morphology and reduced the surface degradation at high temperatures. In addition, increasing $N_2/Ar$ flow ratio reduced the formation of tantalum silicide and enhanced the barrier properties.

  • PDF

Fabrication of Micro Ceramic Thin-Film Type Pressure Sensors for High-Temperature Applications and Its Characteristics (고온용 마이크로 세라믹 박막형 압력센서의 제작과 그 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.888-891
    • /
    • 2003
  • This paper describes on the fabrication and characteristics of micro ceramic thin-film type pressure sensors based on Ta-N strain-gauges for high-temperature applications. The Ta-N thin-film strain-gauges are deposited onto thermally oxidized Si diaphragms by RF sputtering in an argon-nitrogen atmosphere($N_2$ gas ratio: 8 %, annealing condition: $900^{\circ}C$, 1 hr.), Patterned on a wheatstone bridge configuration, and use as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is $1.097{\sim}1.21mV/V.kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS. The fabricated pressure sensor presents a lower TCR, non-linearity than existing Si piezoresistive pressure sensors. The fabricated micro ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that is operable under high-temperature environments.

  • PDF