Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.2.95

Crystalline Structure and Cu Diffusion Barrier Property of Ta-Si-N Films  

Jung, Byoung-Hyo (Department of Materials Science and Engineering, KAIST)
Lee, Won-Jong (Department of Materials Science and Engineering, KAIST)
Publication Information
Korean Journal of Materials Research / v.21, no.2, 2011 , pp. 95-99 More about this Journal
Abstract
The microstructure and Cu diffusion barrier property of Ta-Si-N films for various Si and N compositions were studied. Ta-Si-N films of a wide range of compositions (Si: 0~30 at.%, N: 0~55 at.%) were deposited by DC magnetron reactive sputtering of Ta and Si targets. Deposition rates of Ta and Si films as a function of DC target current density for various $N_2/(Ar+N_2)$ flow rate ratios were investigated. The composition of Ta-Si-N films was examined by wavelength dispersive spectroscopy (WDS). The variation of the microstructure of Ta-Si-N films with Si and N composition was examined by X-ray diffraction (XRD). The degree of crystallinity of Ta-Si-N films decreased with increasing Si and N composition. The Cu diffusion barrier property of Ta-Si-N films with more than sixty compositions was investigated. The Cu(100 nm)/Ta-Si-N(30 nm)/Si structure was used to investigate the Cu diffusion barrier property of Ta-Si-N films. The microstructure of all Cu/Ta-Si-N/Si structures after heat treatment for 1 hour at various temperatures was examined by XRD. A contour map that shows the diffusion barrier failure temperature for Cu as a function of Si and N composition was completed. At Si compositions ranging from 0 to 15 at.%, the Cu diffusion barrier property was best when the composition ratio of Ta + Si and N was almost identical.
Keywords
Ta-Si-N film; Cu; metallization; diffusion barrier;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. M. Sze and J. C. Irvin, Solid State Electron., 11, 599 (1968).   DOI   ScienceOn
2 N. Toyama, Solid State Electron., 26, 37 (1983).   DOI   ScienceOn
3 B. H. Cho, J. J. Yun and W. J. Lee, Jpn. J. Appl. Phys., 46(45), L1135 (2007).   DOI   ScienceOn
4 K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi and D. P. Barkey, J. Electrochem. Soc., 152(11), H173 (2005).   DOI   ScienceOn
5 E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M.-A. Nicolet, J. Appl. Phys. 70(3), 1369 (1991).   DOI
6 T. Oku, E. Kawakami, M. Uekudo, K. Takahiro, S. Yamaguchi and M. Murakami, Appl. Surf. Sci., 99, 265 (1996).   DOI   ScienceOn
7 Y. J. Lee, B. S. Suh, S. K. Rha and C. O. Park, Thin Solid Films, 320, 141 (1998).   DOI   ScienceOn
8 Y. J. Lee, B. S. Suh and C. O. Park, Thin Solid Films, 357, 237 (1999).   DOI   ScienceOn
9 Y. J. Lee, B. S. Suh, M. S. Kwon and C. O. Park, J. Appl. Phys., 85(3), 1927 (1999).   DOI   ScienceOn
10 J. -J. You and K. -S. Bae, Kor. J. Mater. Res., 17(9), 463 (2007) (in Korean).   과학기술학회마을   DOI   ScienceOn
11 J. R. Lloyd, J. Clemens and R. Snede, Microelectron. Reliab., 39, 1595 (1999).   DOI   ScienceOn
12 T. Nitta, T. Ohmi, T. Hoshi, S. Sakai, K. Sakaibara, S. Imai and T. Shibata, J. Electrochem. Soc., 140, 1131 (1993).   DOI
13 J. Tao, N. W. Cheung and C. Hu, IEEE Electron Device Lett., 14, 249 (1993).   DOI   ScienceOn